EXERCICE Nº 8 Réduction simultanée (d'après sujet A, banque PT 2012 librement adapté à partir de 2e)

1. Question préliminaire

Soit E un espace vectoriel sur \mathbb{R} , et f et g deux endomorphismes de E tels que $f \circ g = g \circ f$.

Si λ est une valeur propre de f, démontrer que $E_{\lambda}(f)$, le sous-espace propre de f associé à λ , est stable par g.

Il s'agit de démontrer que : $\forall x \in E_{\lambda}(f)$, $g(x) \in E_{\lambda}(f)$ sachant que : $x \in E_{\lambda}(f) = \text{Ker } (f - \lambda id) \Leftrightarrow f(x) = \lambda x$ On suppose donc que $f(x) = \lambda x$ et on vérifie qu'alors $f(g(x)) = \lambda g(x)$.

Or:
$$f(g(x)) = f \circ g(x) = g \circ f(x) = g(f(x)) = g(\lambda x) = \alpha g(x)$$
 par linéarité de g

2. Soient f et g les endomorphismes de \mathbb{R}^3 dont les matrices dans la base canonique sont respectivement

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 1 & -1 \\ 1 & 1 & 3 \end{pmatrix}$$

Montrer que f et g commutent.

Par pré-multiplication de A sur B : AB = $\begin{pmatrix} L_1 \\ -L_3 \\ L_2 + 2L_3 \end{pmatrix}$ où L_i ligne i de B soit : AB = $\begin{pmatrix} 0 & 1 & 1 \\ -1 & -1 & -3 \\ 1 & 3 & 5 \end{pmatrix}$ Par post-multiplication de A sur B : BA = $\left(C_1 C_3 - C_2 + 2C_3\right)$ où C_i colonne i de B soit : BA = $\left(\begin{array}{ccc} 0 & 1 & 1 \\ -1 & -1 & -3 \\ 1 & 3 & 5 \end{array}\right)$

Ainsi : AB = BA
$$\Leftrightarrow f \circ g = g \circ f \Leftrightarrow f \text{ et } g \text{ commutent}$$

b. Déterminer les valeurs propres et les sous-espaces propres de f et g.

Les matrices A et B sont-elle diagonalisables? trigonalisables?

Puisque f et g sont canoniquement associées à A et B, les éléments propres de f (resp. g) sont ceux de A (resp. de B). Les valeurs propres de A sont les racines de son polynôme caractéristique :

$$\chi_{A}(x) = \det(xI_{3} - A) = \begin{vmatrix} x - 1 & 0 & 0 \\ 0 & x & 1 \\ 0 & -1 & x - 2 \end{vmatrix} = (x - 1) \left(x(x - 2) + 1\right) = (x - 1)(x - 1)^{2} = (x - 1)^{3} \text{ par d\'ev selon } C_{1}(x - 2) = (x - 1)^{3} \text{ par d\'ev selon } C_{1}(x - 2) = (x - 1)^{3} \text{ par d\'ev selon } C_{1}(x - 2) = (x - 1)^{3} \text{ par d\'ev selon } C_{1}(x - 2) = (x - 1)^{3} \text{ par d\'ev selon } C_{1}(x - 2) = (x - 1)^{3} \text{ par d\'ev selon } C_{1}(x - 2) = (x - 1)^{3} \text{ par d\'ev selon } C_{1}(x - 2) = (x - 1)^{3} \text{ par d\'ev selon } C_{1}(x - 2) = (x - 1)^{3} \text{ par d\'ev selon } C_{1}(x - 2) = (x - 1)^{3} \text{ par d\'ev selon } C_{1}(x - 2) = (x - 1)^{3} \text{ par d\'ev selon } C_{1}(x - 2) = (x - 1)^{3} \text{ par d\'ev selon } C_{1}(x - 2) = (x - 1)^{3} \text{ par d\'ev selon } C_{1}(x - 2) = (x - 1)^{3} \text{ par d\'ev selon } C_{1}(x - 2) = (x - 1)^{3} \text{ par d\'ev selon } C_{1}(x - 2) = (x - 1)^{3} \text{ par d\'ev selon } C_{1}(x - 2) = (x - 1)^{3} \text{ par d\'ev selon } C_{1}(x - 2) = (x - 1)^{3} \text{ par d\'ev selon } C_{1}(x - 2) = (x - 1)^{3} \text{ par d\'ev selon } C_{2}(x$$

 $\chi_{A}(x) = \det(xI_{3} - A) = \begin{vmatrix} x - 1 & 0 & 0 \\ 0 & x & 1 \\ 0 & -1 & x - 2 \end{vmatrix} = (x - 1) \Big(x(x - 2) + 1 \Big) = (x - 1)(x - 1)^{2} = (x - 1)^{3} \text{ par d\'ev selon } C_{1}$ $A - I_{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & 1 & 1 \end{pmatrix} \text{ est une matrice de rang 1 (colonnes 2 à 2 proportionnelles). Par le théorème du rang :}$

 $\dim E_A(1) = \dim \ker (A - I_3) = 2$ et, trivialement, $u_1 = (1, 0, 0)$ et $u_2 = (0, 1, -1)$ sont dans $\ker (A - I_3)$ et non colinéaires et donnent une base de E₁(A)

Ainsi: $|Sp(A) = \{1\} \text{ et } E_1(A) = Ker (A - I_3) = Vect(u_1, u_2) \text{ où } u_1 = (1, 0, 0), u_2 = (0, 1, -1) |$

Comme χ_A est scindé dans $\mathbb{R}[X]$, la matrice A est trigonalisable dans $M_3(\mathbb{R})$

Comme dim E₁(A) n'est pas égale à la multiplicité de 1 comme racine la matrice A n'est pas diagonalisable dans $M_3(\mathbb{R})$

$$\chi_B(x) = \begin{vmatrix} x & -1 & -1 \\ 1 & x-1 & 1 \\ -1 & -1 & x-3 \end{vmatrix} = \begin{vmatrix} x & -1 & 0 \\ 1 & x-1 & 2-x \\ -1 & -1 & x-2 \end{vmatrix} = (x-2) \begin{vmatrix} x & -1 & 0 \\ 1 & x-1 & -1 \\ -1 & -1 & 1 \end{vmatrix} = (x-2) \begin{vmatrix} x & -1 & 0 \\ 0 & x-2 & 0 \\ -1 & -1 & 1 \end{vmatrix}$$
 puis, en développant suivant la troisième colonne : $\chi_B(x) = x(x-2)^2$ d'où $Sp(B) = \{0,2\}$ et dans \mathbb{R}^3 :

$$(x, y, z) \in \operatorname{Ker} B \Leftrightarrow \begin{cases} y + z = 0 \\ -x + y - z = 0 \\ x + y + 3z = 0 \end{cases} \Leftrightarrow \begin{cases} y = -z \\ x = -2z \\ 0 = 0 \end{cases} \Leftrightarrow (x, y, z) = z(-2, -1, 1) \text{ aussi}$$

$$E_0(B) = \operatorname{Ker} B = \operatorname{Vect}((2, 1, -1))$$

 $B-2I_2 = \begin{pmatrix} -2 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 1 \end{pmatrix}$ est de rang 2 (2 colonnes égale et 2 colonnes non colinéaires) et, par le théorème du rang : De plus l'égalité des colonnes 2 et 3 donne $(0,1,-1) \in \text{Ker } (B-2I_2) \text{ soit } | E_2(B) = \text{Vect} (0,1,-1) |$ Comme χ_B est scindé dans $\mathbb{R}[X]$, la matrice B est trigonalisable dans $M_3(\mathbb{R})$ Comme dim E₂(B) n'est pas égale à la multiplicité de 2 χ_B, la matrice B n'est pas diagonalisable dans $M_3(\mathbb{R})$

On note e_1 un vecteur propre de g associé à la valeur propre 2. En utilisant la question préliminaire, déterminer un vecteur e_2 non colinéaire à e_1 tel que le sous-espace $Vect(e_1, e_2)$ soit stable par f et par g.

Un espace propre de f est stable par f et, puisque f et g commutent, il est aussi stable par g d'après la question préliminaire. Ici, d'après la question précédente, $e_1 = \alpha(0, 1, -1)$ où $\alpha \neq 0$ donc $e_2 = \alpha u_2 \in E_1(A)$ est aussi un vecteur propre de f et $\alpha u_2 = (0, \alpha, -\alpha)$ ne sera jamais colinéaire à $u_1 = (1, 0, 0)$ à cause de la première composante. Aussi, en prenant $e_2 = u_1 = (1,0,0)$, on obtient une famille libre de 2 vecteurs de $E_1(A) = E_1(f)$ qui est de dimension 2 donc $E_1(f) = \text{Vect}(e_1, e_2)$.qui est bien stable par f et par g

d. En déduire qu'il existe une base de E dans laquelle les matrices de f et g sont triangulaires supérieures.

On a: $f(e_1) = e_1$, $g(e_1) = 2e_1$, $f(e_2) = e_2$ et $g(e_2) \in \text{Vect}(e_1, e_2)$ soit $g(e_2) = \alpha e_1 + \beta e_2$ où $(\alpha, \beta) \in \mathbb{R}^2$ On peut compléter la famille libre (e_1, e_2) en une base $\mathscr{B}' = (e_1, e_2, e_3)$ de \mathbb{R}^3 (c'est le théorème de la base incomplète. Comme $Vect(e_1, e_2, e_3) = E$, $f(e_3)$ et $g(e_3)$ sont aussi dans $Vect(e_1, e_2, e_3)$ soit $\int f(e_3) = ae_1 + be_2 + ce_3$ où $(a, b, c, \gamma, \delta, \varepsilon) \in \mathbb{R}^3$ et, par définition : $g(e_3) = \gamma e_1 + \delta e_2 + \varepsilon e_3$

 $\operatorname{Mat}_{\mathscr{B}'}(f) = \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & c \end{pmatrix} \text{ et } \operatorname{Mat}_{\mathscr{B}'}(g) = \begin{pmatrix} 2 & \alpha & \gamma \\ 0 & \beta & \delta \\ 0 & 0 & \varepsilon \end{pmatrix} \text{ sont bien triangulaires supérieures.}$

On choisit e_1 et e_2 avec $e_1 = (?; -1; ?)$ et $e_2 = (1, ?, ?)$ où ? est un coefficient inconnu. Déterminer un vecteur e_3

tel que, dans la base $\mathcal{B}' = (e_1, e_2, e_3)$, les matrice de f et g sont respectivement $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ et $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix}$.

Au vu de la question $2c : e_1 = (0, -1, 1)$ (ie $\alpha = -1$) et $e_2 = (1, 0, 0)$

On a vu que e_1 et e_2 sont dans le sev $E_1(f)$ aussi : $f(e_1) = e_1$ et $f(e_2) = e_2$

Par ailleurs, $e_1 \in E_2(g)$ donc $g(e_1) = 2e_1$ et $g(e_2) = g(1,0,0) = (0,-1,1) = e_1$ (avec la colonne 1 de B)

Enfin, on cherche $e_3 = (x, y, z)$ avec : $f(e_3) = e_1 + e_3 \Leftrightarrow (A - I_3) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \Leftrightarrow y + z = 1$ mais on veut aussi $g(e_3) = 2e_3 + e_2 + e_1 \Leftrightarrow (B - 2I_2) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \Leftrightarrow \begin{cases} -2x + y + z = 1 \\ -x - y - z = -1 \\ x + y + z = 1 \end{cases} \Leftrightarrow x = 0 \quad \text{car } y + z = 1$

$$g(e_3) = 2e_3 + e_2 + e_1 \Leftrightarrow (B - 2I_2) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \Leftrightarrow \begin{cases} -2x + y + z = 1 \\ -x - y - z = -1 \\ x + y + z = 1 \end{cases} \Leftrightarrow x = 0 \quad \text{car } y + z = 1$$

Enfin: $\begin{vmatrix} 1 & 0 & y \\ -1 & 0 & z \end{vmatrix} \neq 0 \Leftrightarrow -(z+y) \neq 0 \Leftrightarrow -1 \neq 0$ est vérifié pour tout choix de y et z avec y+z=1

On peut donc choisir $e_3 = (0, y, 1 - y)$ où $y \in \mathbb{R}$ est quelconque

- **3.** On considère désormais la matrice C qui a les mêmes coefficients que B sauf le coefficients ligne 1 colonne 1 qui vaut 3 on appelle h l'endomorphisme canoniquement associé à C.
 - **a.** Démontrer que *h* est diagonalisable. *On pourra adapter les calculs faits pour* B

En reprenant le calcul du polynôme caractéristique, on trouve $\chi_h(x) = \chi_C(x) = (x-3)(x-2)^2$

3 est valeur propre simple donc l'espace propre associé est de dimension 1

la matrice $C - 2I_3$ a cette fois trois colonnes identiques aussi elle est de rang 1 et, par le théorème du rang, l'espace propre $E_2(h) = E_2(C) = \text{Ker}(C - 2I_3)$ est de dimension 2

Finalement : χ_h est scindé dans $\mathbb{R}[X]$ et la dimension des sev propres est égales à l'ordre de multiplicité des valeurs propres de h donc h est diagonalisable

b. Préciser une base $\mathscr{B}'' = (v_1, v_2, v_3)$ dans laquelle la matrice de h est $D = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \beta \end{pmatrix}$ avec $(\alpha, \beta) \in \mathbb{R}^2$

On a : E₃(h) = Ker (C – 3I₃) = Vect((1,0,0)) et E₂(h) = Vect((1,-1,0),(0,1,-1)) alors $Mat_{\mathscr{B}''}(h) = diag(3,2,2)$ où $\mathscr{B}'' = (v_1, v_2, v_3)$ où $v_1 = (1,0,0), v_2 = (1,-1,0)$ et $v_3 = (0,1,-1)$ est une base de diagonalisation de h

- **c.** Le commutant \mathscr{K} de h est l'ensemble des endomorphismes de \mathbb{R}^3 qui commutent avec h autrement dit $\mathscr{K} = \left\{ \phi \in \mathscr{L}(\mathbb{R}^3) \ \middle| \ h \circ \phi = \phi \circ h \right\}$
 - i. Démontrer que $\mathcal K$ est espace vectoriel.

On montre que c'est un sev de $\mathscr{L}(E)$: $\mathscr{K} \subset \mathscr{L}(E)$ (i) et $\mathscr{K} \neq \emptyset$ (ii) puisque $id \in \mathscr{K}$ De plus, pour $(\phi_1, \phi_2) \in \mathscr{K}^2$ et $\alpha \in \mathbb{R}$, alors : $h \circ (\alpha \phi_1 + \phi_2) = \alpha h \circ \phi_1 + h \circ \phi_2$ car h est linéaire $= \alpha \phi_1 \circ h + \phi_2 \circ h = (\alpha \phi_1 + \phi_2) \circ h$

aussi $\alpha \phi_1 + \phi_2 \in \mathcal{K}$ donc $\underline{\mathcal{K}}$ est stable par combinaison linéaire (iii)

Alors: (i), (ii) et (iii) $\Rightarrow \mathcal{K}$ est un sous-espace vectoriel de $\mathcal{L}(\mathbb{R}^3)$

ii. Pour $\phi \in \mathcal{K}$, en utilisant la question préliminaire, justifier que :

 $\exists (\alpha, \beta, \gamma, \delta, \varepsilon) \in \mathbb{R}^5$, $\phi(v_1) = \alpha v_1$, $\phi(v_2) = \beta v_2 + \gamma v_3$ et $\phi(v_3) = \delta v_2 + \varepsilon v_3$ Préciser alors les matrices M de $M_3(\mathbb{R})$ telles que MD = DM.

 φ laisse stable les sev propres de h d'après la question préliminaire aussi :

Comme $E_3(h) = \text{Vect}(v_1), \quad \varphi(v_1) \in E_3(h) = \text{Vect}(v_1) \text{ aussi}: \quad \exists \alpha \in \mathbb{R}, \ \varphi(v_1) = \alpha v_1$

Comme $E_2(h) = \text{Vect}(v_2, v_3)$, $\varphi(v_2)$ et $\varphi(v_3)$ sont dans $E_2(h) = \text{Vect}(v_2, v_3)$ et donc :

$$\exists (\beta, \gamma, \delta, \varepsilon) \in \mathbb{R}^4, \ \phi(v_2) = \beta v_2 + \gamma v_3 \ \text{et} \ \phi(v_3) = \delta v_2 + \varepsilon v_3$$

En utilisant l'isomorphisme $\left[f\mapsto \operatorname{Mat}_{\mathscr{B}''}(f)\right]$ de $\mathscr{L}(\mathbb{R}^3)$ vers $\operatorname{M}_3(\mathbb{R})$, on peut identifier $\phi\in\mathscr{K}$ à une matrice M vérifiant MD = DM

On vient de voir que, nécessairement : $M = Mat_{\mathscr{B}''}(\phi) = \left(\begin{array}{ccc} \alpha & 0 & 0 \\ 0 & \beta & \delta \\ 0 & \gamma & \epsilon \end{array} \right) avec \ (\alpha,\beta,\gamma,\delta,\epsilon) \in \mathbb{R}^5$

puisque MD = $\begin{pmatrix} 2\alpha & 0 & 0 \\ 0 & 3\beta & 3\delta \\ 0 & 3\gamma & 3\varepsilon \end{pmatrix}$ et DM = $\begin{pmatrix} 2\alpha & 0 & 0 \\ 0 & 3\beta & 3\delta \\ 0 & 3\gamma & 3\varepsilon \end{pmatrix}$ donc il n'y a pas de condition supplémentaire à imposer à $(\alpha, \beta, \gamma, \delta, \varepsilon) \in \mathbb{R}^5$.

iii. En déduire la dimension de \mathcal{K} .

En utilisant l'isomorphisme $[f \mapsto \operatorname{Mat}_{\mathscr{B}''}(f)]$ de $\mathscr{L}(\mathbb{R}^3)$ vers $\operatorname{M}_3(\mathbb{R})$, la dimension de \mathscr{K} est la même que celle de $\operatorname{C}(\operatorname{M})$ l'ensemble des matrices M de $\operatorname{M}_3(\mathbb{R})$ avec $\operatorname{MD} = \operatorname{DM}$.

On a vu que : $C(M) = Vect(E_{11}, E_{22}, E_{23}, E_{32}, E_{33})$ et la famille $(E_{11}, E_{22}, E_{23}, E_{32}, E_{33})$ est libre (car sous-famille d'une famille libre) aussi : $\boxed{\dim \mathcal{K} = \dim C(M) = 5}$