PT: TD nº 2 sur le chapitre II: Utilisation de la trace

Dans $M_n(\mathbb{R})$ où $n \in \mathbb{N} - \{0, 1\}$, on considère l'ensemble E des matrices de $M_n(\mathbb{R})$ vérifiant : $M - M^T = tr(M)I_n$

1. Montrer que E est un sous-espace vectoriel de $M_n(\mathbb{R})$

Par définition : $E \subset M_n(\mathbb{R})$

 $\mathbf{E} \neq \emptyset$ car la matrice nulle $\mathbf{O}_{nn} \in \mathbf{E}$ puisque $\mathbf{O}_{nn} - \mathbf{O}_{nn}^{\mathrm{T}} = \mathbf{O}_{nn} - \mathbf{O}_{nn} = \mathbf{O}_{nn}$ et $\mathrm{tr}(\mathbf{O}_{nn})\mathbf{I}_n = \mathbf{0} \times \mathbf{I}_n = \mathbf{O}_{nn}$

Prouvons que E est stable par combinaison linéaire : $\forall (M, N) \in E^2, \forall \alpha \in \mathbb{R}$, vérifions que $\alpha M + N \in E$

 $(\alpha M + N) - (\alpha M + N)^T = (\alpha M + N) - (\alpha M^T + N^T)$ car la transposition est linéaire mais alors :

 $(\alpha M + N) - (\alpha M + N)^{T} = \alpha (M - M^{T}) + (N - N^{T}) = \alpha tr(M)I_{n} + tr(N)I_{n}$ puisque M et N sont dans E

Mais, puisque la trace est linéaire:

 $(\alpha M + N) - (\alpha M + N)^{T} = \alpha tr(M)I_{n} + tr(N)I_{n} = (\alpha tr(M) + tr(N))I_{n} = tr(\alpha M + N)I_{n}$ et donc $\alpha M + N \in E$

2. Si $M \in E$, déterminer tr(M). En déduire que, si $M \in E$, alors M est une matrice symétrique réelle.

Si $M \in E$ alors : $M - M^T = tr(M)I_n$ alors, en prenant la trace dans cette égalité, on a :

$$\operatorname{tr}(\mathbf{M}) - \operatorname{tr}(\mathbf{M}^{\mathrm{T}}) = \operatorname{tr}(\mathbf{M})\operatorname{tr}(\mathbf{I}_n) \Leftrightarrow \operatorname{tr}(\mathbf{M}) - \operatorname{tr}(\mathbf{M}) = \operatorname{tr}(\mathbf{M}) \times n \Leftrightarrow 0 = \operatorname{tr}(\mathbf{M}) \times n$$

Puisque $n \neq 0$, on a nécessairement tr(M) = 0 et alors : $M - M^T = 0 \times I_n = 0 \Rightarrow M = M^T$ ie M est symétrique réelle.

3. Est-ce que toute les matrices symétriques réelle sont dans E? Démontrer que : $E = S_n(\mathbb{R}) \cap Ker$ (tr) où $S_n(\mathbb{R})$ est l'ensemble des matrices symétriques réelles.

Non, toutes les matrices symétriques réelles ne sont pas dans E: la matrice I_n est symétrique réelle mais elle n'est pas dans E car $I_n - I_n^T = I_n - I_n = O_{nn}$ alors que $tr(I_n)I_n = nI_n \neq O_{nn}$

On a déjà vu que : si $M \in E$ alors $M \in S_n(\mathbb{R})$ et que $tr(M) = 0 \Leftrightarrow M \in Ker$ (tr) de sorte que $M \in S_n(\mathbb{R}) \cap Ker$ (tr)

On en déduit que : $E \subset S_n(\mathbb{R}) \cap Ker$ (tr)

Réciproquement : si $M \in S_n(\mathbb{R}) \cap Ker$ (tr) alors $M - M^T = 0$ (car M est symétrique) et tr(M) = 0 donc l'égalité $M - M^T = tr(M)I_n$

est vérifiée et on a bien $M \in E$. On a donc aussi : $S_n(\mathbb{R}) \cap Ker$ (tr) $\subset E$ Par double inclusion, on conclut que : $E = S_n(\mathbb{R}) \cap Ker$ (tr)

4. On appelle E_{ij} la matrice dont tous les coefficients sont nuls sauf celui en position (i, j) qui vaut 1.

On rappelle que $(E_{ij})_{1 \le i,j \le n}$ est la base canonique de $M_n(\mathbb{R})$.

Donner (sans démonstration) une base de $S_n(\mathbb{R})$ exprimée à l'aide des matrices $(E_{ij})_{1 \le i,j \le n}$ ainsi que dim $S_n(\mathbb{R})$

Pour obtenir une matrice symétrique, il faut définir les coefficients de la diagonales et le coefficient (i, j) au dessus de la diagonale (càd i > i) est le même que le coefficient (i, i) en dessous de la diagonale.

Par exemple pour $S_3(\mathbb{R})$:

$$\mathbf{M} \in \mathbf{S}_3(\mathbb{R}) \Leftrightarrow \exists (a,b,c,d,e,f) \in \mathbb{R}^5, \ \mathbf{M} = \left(\begin{array}{cc} a & d & f \\ d & b & e \\ f & d & c \end{array} \right) = a\mathbf{E}_{11} + b\mathbf{E}_{22} + c\mathbf{E}_{33} + d\big(\mathbf{E}_{12} + \mathbf{E}_{21}\big) + e\big(\mathbf{E}_{21} + \mathbf{E}_{12}\big) + f\big(\mathbf{E}_{13} + \mathbf{E}_{31}\big)$$

Une base de $S_n(\mathbb{R})$ est donc $\left((E_{11}, \dots, E_{nn}) \cup (E_{ij} + E_{ji})_{1 < i < j \le n} \right)$ et on a : $\dim S_n(\mathbb{R}) = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$

Pour avoir tous les coefficients d'une matrice symétrique, on doit connaître 1 coefficient sur la dernière ligne, 2 sur l'avantdernière,..., n coefficients sur la première ligne

5. Justifier que E est un hyperplan de $S_n(\mathbb{R})$ et, en déduire, dim E.

Dans
$$S_n(\mathbb{R})$$
, notons $(m_{11}, m_{22}, \dots, m_{nn}) \cup (m_{ij})_{1 \leq i < j \leq n}$ les coordonnées de M dans la base précédente. $M \in \mathbb{E} \Leftrightarrow m_{11} + m_{22} + \dots + m_{nn} = 0 \Leftrightarrow 1 \times m_{11} + 1 \times m_{22} + \dots + 1 \times m_{nn} + \sum_{1 \leq i < j \leq n} 0 \times m_{ij} = 0$

aussi E est caractérisée par une équation linéaire non triviale dans la base de $S_n(\mathbb{R})$ donc E est un hyperplan de $S_n(\mathbb{R})$ et :

$$\dim \mathbf{E} = \dim \mathbf{S}_n(\mathbb{R}) - 1 = \frac{n(n+1)}{2} - 1$$