EXEMPLE 2 LE 1), LE 2) ET LE 3)

1. Nature de la série $\sum u_n$ où $u_n = \frac{1}{e^n + (-1)^n \sqrt{n}}$

On cherche un équivalent de u_n pour éliminer la DVG et obtenir le signe lorsque n est grand.

Par croissance comparée:
$$(-1)^n \sqrt{n} = o(e^n)$$
 car $\left| \frac{(-1)^n \sqrt{n}}{e^n} \right| = n^{\frac{1}{2}} e^{-n} \xrightarrow[n \to +\infty]{} 0$

Alors:
$$u_n = \frac{1}{e^n + o(e^n)} \sim \frac{1}{e^n}$$
 et $\frac{1}{e^n} > 0$ donc, par critère d'équivalence, $\sum u_n$ et $\sum \frac{1}{e^n}$ ont la même nature.

Or,
$$\sum \frac{1}{e^n} = \sum \left(\frac{1}{e}\right)^n$$
 est une série géométrique de raison $q = \frac{1}{e}$ avec $|q| < 1$ donc elle converge.

Ainsi, la série
$$\sum u_n$$
 où $u_n = \frac{1}{e^n + (-1)^n \sqrt{n}}$ converge

2. Nature de la série $\sum u_n$ où $u_n = \cos \frac{1}{\sqrt{n}} - \cosh \frac{1}{\sqrt{n}}$

On cherche un équivalent de u_n pour éliminer la DVG et obtenir le signe lorsque n est grand.

Pour cela, on utilise des DL₂(0):
$$\cos x = 1 - \frac{x^2}{2} + o(x^2)$$
 et $\cot x = 1 + \frac{x^2}{2} + o(x^2)$ avec $x = \frac{1}{\sqrt{n}} \xrightarrow[n \to +\infty]{} 0$

Alors:
$$u_n = 1 - \frac{1}{2} \left(\frac{1}{\sqrt{n}} \right)^2 + o\left(\frac{1}{n} \right) - \left(1 + \frac{1}{2} \left(\frac{1}{\sqrt{n}} \right)^2 + o\left(\frac{1}{n} \right) \right) = -\frac{1}{n} + o\left(\frac{1}{n} \right) \sim -\frac{1}{n}$$

Alors:
$$u_n \sim -\frac{1}{n}$$
 et $-\frac{1}{n} < 0$ donc, par critère d'équivalence, les séries $\sum u_n$ et $\sum \left(-\frac{1}{n}\right)$ sont de même nature.

Or
$$\sum \left(-\frac{1}{n}\right) = -\sum \frac{1}{n}$$
 est une série de Riemann avec $\alpha = 1 \le 1$ donc qui est divergente.

Ainsi, la série
$$\sum u_n$$
 où $u_n = \cos \frac{1}{\sqrt{n}} - \operatorname{ch} \frac{1}{\sqrt{n}}$ diverge

3. Nature de $\sum u_n$ où $u_n = \frac{1}{n^{1+\frac{1}{n}}}$

On cherche un équivalent de u_n pour éliminer la DVG et obtenir le signe lorsque n est grand.

On repère une puissance du type $b_n^{a_n}$ où la base b_n et l'exposant a_n bouge en même temps avec n: on sait qu'il faut alors passer en écriture exponentielle: $b_n^{a_n} = \exp(a_n \ln b_n)$

On a:
$$n^{1+\frac{1}{n}} = \exp((1+\frac{1}{n})\ln n) = e^{\ln n}e^{\frac{\ln n}{n}}$$

Or:
$$\frac{\ln n}{n} \xrightarrow[n \to +\infty]{} 0$$
 (par croissance comparée) donc $e^{\frac{\ln n}{n}} \xrightarrow[n \to +\infty]{} 1$ et, par suite : $n^{1+\frac{1}{n}} \sim e^{\ln n} \times 1 = n \Rightarrow u_n = \frac{1}{n^{1+\frac{1}{n}}} \sim \frac{1}{n}$

Alors:
$$\begin{cases} u_n \sim \frac{1}{n} > 0 \\ \sum \frac{1}{n} \text{ DV car de Riemann avec } \alpha = 1 \ge 1 \end{cases} \Rightarrow \boxed{\sum u_n \text{ DV}}$$

Exemple 3 Justifier l'existence et calculer la somme
$$\sum_{n=1}^{+\infty} u_n$$
 où $u_n = \frac{1}{n^2 + 3n + 2} + \frac{e^{n-1}}{3^{n+1}}$

On écrit
$$u_n = v_n + w_n$$
 où $v_n = \frac{1}{n^2 + 3n + 2}$ et $w_n = \frac{e^{n-1}}{4^{n+1}}$

•
$$v_n = \frac{1}{n^2 + 3n + 1} \sim \frac{1}{n^2}$$
 et $\frac{1}{n^2} > 0$ donc, par équivalence, $\sum v_n$ de même nature que $\sum \frac{1}{n^2}$ qui CV car de Riemann avec $\alpha = 2 > 1$

•
$$w_n = \frac{e^{n-1}}{4^{n+1}} = \frac{1}{3e} \times \left(\frac{e}{3}\right)^n$$
 est une série géométrique de raison $q = \frac{e}{3}$ avec $|q| < 1$ ($e \approx 2,7$) donc $\sum w_n$ CV

Ainsi, puisque
$$u_n = v_n + w_n$$
, alors par somme de séries convergentes, $\sum u_n \text{ CV}$ et $\sum_{n=1}^{+\infty} u_n = \sum_{n=1}^{+\infty} v_n + \sum_{n=1}^{+\infty} w_n$

Calcul de la somme :
$$\sum_{n=1}^{+\infty} w_n = \frac{1}{3e} \sum_{n=1}^{+\infty} \left(\frac{e}{3}\right)^n = \frac{1}{3e} \times \frac{e}{3} \times \frac{1}{1 - \frac{e}{3}} = \frac{1}{3(3 - e)}$$

Et:
$$v_n = \frac{1}{n^2 + 3n + 1} = \frac{1}{(n+2)(n+1)} = \frac{1}{n+1} - \frac{1}{n+2}$$
 et on reconnaît une somme télescopique donc : $\sum_{n=1}^{+\infty} v_n = \frac{1}{1+1} - 0 = \frac{1}{2}$

Ainsi:
$$\sum_{n=1}^{+\infty} u_n = \frac{1}{2} + \frac{1}{3(3-e)}$$