PT : Correction du TD nº 1 sur le chapitre II

EXERCICE 1 On considère l'espace vectoriel $E = C^0(\mathbb{R}, \mathbb{R})$ et on considère les sous-ensembles :

- F constitué des fonctions de E 1 périodique une fonction f est 1-périodique si : $\forall x \in \mathbb{R}, f(x+1) = f(x)$
- G constitué des fonctions de E qui sont nulles sauf éventuellement sur un segment Un segment de ℝ est un intervalle de la forme [a,b] où $(a,b) \in \mathbb{R}^2$. Une fonction g de G vérifie donc : $\exists (a,b) \in \mathbb{R}^2$ avec a < b avec f(x) = 0 si $x \notin [a,b]$ On ne sait rien des valeurs de g(x) sur [a,b] mais on sait que g est C^0 (continue) sur \mathbb{R} donc $\lim_{x \to a} g(x) = 0 = \lim_{x \to a} g(x)$
- H constitué des fonctions polynômiales qui s'annule en 0 une fonction h de H a une expression polynômiale (càd h(x) est un polynôme en x) avec h(0) = 0

Démontrer que F, G et H sont des sev de E qui sont en somme directe

On demande seulement de vérifier que $F \oplus G \oplus G$ pas $F \oplus G \oplus G = E!$

Il s'agit d'établir que : 1) F, G et H sont des sev de E 2) la somme F + G + H est directe Attention! On ne demande pas d'établir $F \oplus G \oplus H = E$ mais seulement que la somme est directe...Il n'y a pas à prouver : F + G + H = E et on n'a d'ailleurs aucune certitude que \supset soit vraie Preuve de 1) :

- Par définition : F et G sont inclus dans E et H également puisqu'une fonction polynômiale est continue sur $\mathbb R$
- la fonction nulle $0_E = [x \mapsto 0]$ est dans chacun de ces sev :
 - elle est bien 1-périodique car $\forall x \in \mathbb{R}, \ 0_{\mathcal{E}}(x+1) = 0 = 0_{\mathcal{E}}(x) \ donc \ 0_{\mathcal{E}} \in \mathcal{F}$
 - elle est nulle partout donc $0_E \in G$
 - elle est polynômiale (avec tous les coefficients nuls) et $0_E(0) = 0$ donc $0_E \in H$
- ces sev sont stables par combinaison linéaire. Réalisons la preuve pour G (à faire pour F et H) :

```
<u>Pour F</u>, il s'agit de vérifier : \forall f_1 \in F, \forall f_2 \in F, \forall \alpha \in \mathbb{R}, \alpha f_1 + f_2 \in F
```

```
On sait : a) f_1 \in \mathbb{F} \Leftrightarrow \forall x \in \mathbb{R}, f_1(x+1) = f_1(x) et b) f_2 \in \mathbb{F} \Leftrightarrow \forall x \in \mathbb{R}, f_2(x+1) = f_2(x)
```

On veut: $f = \alpha f_1 + f_2 \in \mathbb{F} \Leftrightarrow \forall x \in \mathbb{R}, f(x+1) = f(x)$

On prouve : $\forall x \in \mathbb{R}$, $f(x+1) = \alpha f_1(x+1) + f_2(x+1) =_{\text{avec a) et b}} \alpha f_1(x) + f_2(x) = f(x)$

Pour G, il s'agit de vérifier : $\forall g_1 \in G, \forall g_2 \in G, \forall \alpha \in \mathbb{R}, \alpha g_1 + g_2 \in G$

On sait : a) $g_1 \in G$ soit g_1 est C^0 sur \mathbb{R} et $\exists (a_1, b_1) \in \mathbb{R}^2$ avec $a_1 < b_1$ et : $\forall x \in \mathbb{R} - [a_1, b_1], g_1(x) = 0$

 $\mathbb{R} - [a_1, b_1]$ signifie \mathbb{R} privé de $[a_1, b_1]$ donc, si $x \in \mathbb{R} - [a_1, b_1]$ alors $x \in \mathbb{R}$ mais $x \notin [a_1, b_1]$

b) $g_2 \in G$ soit g_2 est C^0 sur \mathbb{R} et $\exists (a_2, b_2) \in \mathbb{R}^2$ avec $a_2 < b_2$ et : $\forall x \in \mathbb{R} - [a_2, b_2], g_2(x) = 0$

On veut: $g = \alpha g_1 + g_2 \in G$ soit g est C^0 sur \mathbb{R} et $\exists (a, b) \in \mathbb{R}^2$ avec a < b et: $\forall x \in \mathbb{R} - [a, b], g(x) = 0$

On prouve : D'abord, $g = \alpha g_1 + g_2$ est C⁰ sur \mathbb{R} comme combinaison linéaire de fonctions continues.

Ensuite, on définit $a = \min(a_1, a_2)$ et $b = \max(b_1, b_2)$ alors $(a, b) \in \mathbb{R}^2$ avec a < b et : pour $x \in \mathbb{R}$ avec $x \notin [a, b]$

soit x < a et : $x < a = \min(a_1, a_2) \le a_1$ d'où $g_1(x) = 0$ et $x < a = \min(a_1, a_2) \le a_2$ d'où $g_2(x) = 0$

soit x > b et : $x > \max(b_1, b_2) \ge b_1$ d'où $g_1(x) = 0$ et $x > b = \max(b_1, b_2) \ge b_2$ d'où $g_2(x) = 0$

dans les deux cas : $g(x) = \alpha g_1(x) + g_2(x) = \alpha \times 0 + 0 = 0$ donc g est nulle sauf éventuellement sur [a, b]

Pour H, il s'agit de vérifier : $\forall h_1 \in H, \forall h_2 \in H, \forall \alpha \in \mathbb{R}, \alpha h_1 + h_2 \in H$

On sait : a) $h_1 \in H$ soit $h_1(x)$ est polynômiale avec $h_1(0) = 0$ b) $h_2 \in H$ soit $h_2(x)$ est polynômiale avec $h_2(0) = 0$

On veut : $h = \alpha h_1 + h_2 \in H$ soit h(x) est polynômiale et h(x) = 0

On prouve : une CL d'expression polynomiale est polynômiale donc $h(x) = \alpha h_1(x) + h_2(x)$ est polynômiale $h(0) = \alpha h_1(0) + h_2(0) = \alpha \times 0 + 0 = 0$

<u>Preuve de 2)</u>: La somme est directe si $0_E = [x \mapsto 0]$ admet pour unique décomposition la décomposition triviale.

On se donne $(f, g, h) \in F \times G \times H$ avec $f + g + h = [x \mapsto 0] \Leftrightarrow \forall x \in \mathbb{R}, \ f(x) + g(x) + h(x) = 0 \ (*)$

On sait : a) $\forall x \in \mathbb{R}$, f(x+1) = f(x) b) g est continue et : $\exists (a,b) \in \mathbb{R}^2$ avec a < b et g(x) = 0 si $x \notin [a,b]$

c) h(x) est polynômiale et h(0) = 0

On veut : $f = g = h = 0_E$ soit $\forall x \in \mathbb{R}$, f(x) = g(x) = h(x) = 0

On prouve: Ici, l'argument est un peu plus difficile:

Pour obtenir $f = 0_E$, il suffit de montrer que f est nulle sur un segment d'amplitude 1

Pour obtenir $h = 0_E$, plusieurs pistes : infinité de racine, nullité des coefficient, polynôme contant à 0...

En prenant un peu de recul, on voit que les fonctions de F et de G sont bornées...propriété que ne possède pas un polynôme s'il n'est pas constant!

On remarque que:

- $f(\mathbb{R}) = f([0,1])$ puisque f est 1 périodique mais, puisque f est \mathbb{C}^0 sur le segment [0,1], elle y est bornée et donc f est bornée sur \mathbb{R}
- ∃(a,b) ∈ \mathbb{R}^2 , $\forall x \in \mathbb{R} [a,b]$, g(x) = 0 et, puisque g est \mathbb{C}^0 sur [a,b], elle est bornée sur [a,b]. Ainsi, g est bornée sur \mathbb{R} (car elle l'est en dehors et en dedans de [a,b])
- h est polynômiale donc, si elle est non constante, h n'est pas bornée (car $\lim_{x \to +\infty} |h(x)| = +\infty$)

Mais : $f + g + h = 0_E \Leftrightarrow h = -f - g$ de sorte que h est bornée sur \mathbb{R} . Cela entraı̂ne donc que h est forcément constante. Mais comme h(0) = 0, on a en fait $h = [x \mapsto 0] = 0_E$

Par suite, l'égalité $f+g+h=0_E$ devient f=-g. Cette fonction doit être est 1 périodique et nulle en dehors de [a,b] donc elle est, par exemple nulle sur [b+1,b+2] d'amplitude 1 et on en déduit, par périodicité, que c'est forcément la fonction nulle : $f=0_E$ puis $g=-f=0_E$

EXERCICE 3 Cet exercice est un exercice de révision de PTSI. Il ne sera pas repris en classe.

Soit *u* un endomorphisme de $E = \mathbb{R}^n$ avec $rg(u) = rg(u^2)$

1. Montrer que : $\ker u^2 = \ker u$

```
On doit prouver l'égalité de 2 sev or : F = G \Leftrightarrow \begin{cases} F \subset G \\ G \subset F \end{cases} \Leftrightarrow \begin{cases} F \subset G \\ \dim F = \dim G \end{cases}
L'inclusion : \ker u \subset \ker u^2 est triviale car : \forall x \in E, \ x \in \ker u \Rightarrow u(x) = 0_E \Rightarrow u^2(x) = u(u(x)) = u(0_E) = 0_E \Rightarrow x \in \ker u^2
De plus, par le théorème du rang : \dim \ker u = \dim E - \operatorname{rg} u = \dim E - \operatorname{rg} (u^2) = \dim \ker u^2
Alors : \begin{cases} \ker u \subset \ker u^2 \\ \dim \ker u = \dim \ker (u^2) \end{cases} \Rightarrow \ker u = \ker (u^2)
```

2. En déduire que $\ker u$ et $\operatorname{Im} u$ sont supplémentaires.

```
Puisque \dim E = n < +\infty, \ker u et \operatorname{Im} u sont supplémentaire càd \ker u \oplus \operatorname{Im} u = E \Leftrightarrow \begin{cases} \dim \operatorname{Im} u + \dim \ker u = \dim E & (i) \\ \operatorname{Im} u \cap \ker u = \{0_E\} & (ii) \end{cases}
```

La première proposition (i) est triviale puisqu'on reconnaît le théorème du rang appliqué à $u \in \mathcal{L}(E)$.

Prouvons (*ii*) autrement dit : $\forall x \in \text{Im } u \cap \ker u, \ x = 0_E$

```
\underline{\text{On sait}}: \quad x \in \text{Im } u \Rightarrow \exists x' \in \text{E}, \ x = u(x') \quad \text{et} \quad x \in \ker u \Leftrightarrow u(x) = 0_{\text{E}}
\text{mais aussi} \quad rg(u) = \text{rg}(u^2) \quad \text{et} \quad \ker(u) = \ker(u^2)
```

Le« en déduire » souligne qu'on a toujours l'hypothèse du départ sur les rangs et cette hypothèse permet d'obtenir un résultat sur les noyaux prouvé en 1)

```
\frac{\text{Prouvons le}}{\text{or ker}(u^2)} : \quad u(x) = 0_{\text{E}} \Rightarrow_{\text{car } x = u(x')} u(u(x')) = u^2(x') = 0_{\text{E}} \Rightarrow x' \in \text{ker}(u^2)
\text{or ker}(u^2) = \text{ker}(u) \text{ donc} : \quad x' \in \text{ker}(u^2) \Rightarrow x' \in \text{ker}(u) \Rightarrow x = u(x') = 0_{\text{E}}
```

3. Étudier les réciproques.

```
On dresse un bilan des implications prouvées dans les questions 1) et 2)
```

```
Dans la question 1), on a prouvé : rg(u) = rg(u^2) \Rightarrow \ker u = \ker u^2
```

Dans la question 2), on a prouvé : $\ker u = \ker u^2 \Rightarrow \ker u \oplus \operatorname{Im} u = \operatorname{E}$

• Étudions la réciproque de : $rg(u) = rg(u^2) \Rightarrow \ker u = \ker u^2$

Si ker $u = \ker u^2$ alors, par le théorème du rang, on a encore :

$$rg(u^2) = dim E - dim ker(u^2) = dim E - dim ker u = rgu$$

La réciproque est donc vraie et on a : $rg(u) = rg(u^2) \Leftrightarrow ker u = ker u^2$

• Étudions la réciproque de : $\ker u = \ker u^2 \Rightarrow \ker u \oplus \operatorname{Im} u = \operatorname{E}$

Si on suppose $\ker u$ et $\operatorname{Im} u$ supplémentaire, alors : $\begin{cases} \dim \operatorname{Im} u + \dim \ker u = \dim \operatorname{E} & (i) \\ \operatorname{Im} u \cap \ker u = \{0_{\operatorname{E}}\} & (ii) \end{cases}$ (c'est le « on sait »)

La propriété (i) ne donne pas de nouvelle information car elle est toujours vraie par le théorème du rang. C'est donc la proposition $\ker u \cap \operatorname{Im} u = \{0_E\}$ qui va être utile.

A-t-on ker $u = \ker(u^2)$? C'est le « on veut »

Reste à faire le « On prouve » L'inclusion $\ker u \subset \ker(u^2)$ est toujours vraie. Examinons l'autre inclusion : si $x \in \ker(u^2)$ alors $u^2(x) = 0_E$ mais alors $u(x) \in \operatorname{Im} u \cap \ker u = \{0_E\}$ (u(x) est bien une image et $u(u(x)) = 0_E$) donc $u(x) = 0_E \Rightarrow x \in \ker u$. L'autre inclusion est vraie. Ainsi, on a bien $\ker u = \ker(u^2)$

La réciproque est donc vraie et on a : $\ker u = \ker u^2 \Leftrightarrow \operatorname{Im} u \oplus \ker u = \operatorname{E}$

En définitive, on peut conclure : $rg(u) = rg(u^2) \Leftrightarrow \ker u = \ker u^2 \Leftrightarrow \operatorname{Im} u \oplus \ker u = \operatorname{E}$