
PROGRAMME DE KHÔLLE DE LA SEMAINE N°18

L’oral commencera avec une question de cours issue de la la liste des questions de cours associée à ce programme et sera
évaluée sur 4 points. La réponse à cette question de cours doit être rapide et précise ! (Pas plus de 20 minutes)

• Cours : CHAPITRE VII FONCTIONS DE 2 OU 3 VARIABLES

Ce chapitre a été travaillé en classe inversée.

I) Limites et continuité

I-1) Ensemble de définition I-2) Limites I-3) Continuité

Les élèves doivent :

• savoir donner et représenter le domaine de définition d’une fonction de 2 ou 3 variables, savoir définir les applications
partielles

• savoir définir la notion de limite d’une fonction de 2 ou 3 variables en un point adhérent au domaine de définition et éven-
tuellement nier l’existence d’une limite en utilisant des directions partielles

• savoir définir la continuité d’une fonction de 2 ou 3 variables. La démonstration de la continuité en des singularités ponc-
tuelles n’est pas un attendu du programme. Les élèves doivent toutefois pourvoir conclure à la continuité dans des cas
simples où il suffit d’appliquer les théorèmes usuels à partir des fonctions de références (polynômiales, projection, etc...)

• savoir que, si f est une fonction continue sur Rp (p ∈ {2,3}) à valeurs réelles, alors {x ∈Rp | f (x) > 0} et {x ∈Rp | f (x) < 0} sont
des parties ouvertes et {x ∈Rp | f (x) Ê 0} et {x ∈Rp | f (x) = 0} des parties fermées

• savoir qu’une fonction continue sur une partie fermée et bornée de Rp (p ∈ {2,3}) à valeurs réelle est une fonction bornée qui
atteint ses bornes

II) Dérivées partielles du premier ordre et classe C1

Les élèves doivent :

• savoir définir les dérivées partielles premières et les calculer en dérivant selon une variable en gardant les autres constantes
lorsque les théorèmes usuels s’appliquent

• savoir définir une dérivée partielle ponctuellement et la calculer à l’aide d’un taux d’accroissement en des points où le calcul
avec les théorèmes usuels est compliqué ou impossible

• savoir définir le vecteur gradient noté ∇ f (x) = #        »

g r ad f (x) (on rappelle son utilité pour déterminer la normale à une courbe
plane donnée par une équation cartésienne f (x, y) = 0)

• savoir définir la classe C1 pour une fonction de plusieurs variables et justifier la classe C1 d’une application à l’aide des
théorèmes usuels et des fonctions de référence

• connaître la formule de Taylor-Young à l’ordre 1 pour une fonction de plusieurs variables : elle garantie que la classe C1

entraîne la continuité pour les fonctions de plusieurs variables

La formule de Taylor-Young à l’ordre 2 n’est pas au programme pour l’instant

III) Dérivées partielles du second ordre et classe C2

Les élèves doivent :

• savoir définir les dérivées partielles secondes et les calculer en dérivant selon une variable en gardant les autres constantes
lorsque les théorèmes usuels s’appliquent

• savoir justifier qu’une fonction de plusieurs variables est de classe C2 à l’aide des théorèmes usuels

• savoir que la classe C2 entraîne la classe C1 pour une fonction de plusieurs variables

• connaître et utiliser le théorème de Schwarz (égalité des dérivées croisées pour une fonction de classe C2). En particulier,
utiliser ce théorème pour nier qu’une fonction est de classe C2 au voisinage d’un point)
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IV) Généralisation pour les fonctions de Rp dans Rn

Les notions sont généralisées aux fonctions vectorielles : la régularité de l’application se lit sur les applications coordonnées

V) Dérivées des fonctions composées

Les élèves doivent

• connaître la notion de dérivée selon un vecteur #»u non nul d’une fonction [ f : U ⊂Rp →R] en un point a ∈U

il s’agit de la limite lim
t→0

f (a + t #»u )− f (a)

t
= 〈∇ f (a),u

〉= 〈
#        »

g r ad f (a),u
〉

lorsqu’elle existe

• savoir calculer la dérivée d’une fonction [t 7→ f
(
x1(t ), . . . , xp (t )

)
] = f ◦γ(t ) où γ(t ) = (

x1(t ), . . . , xp (t )
)

( f ◦γ)′(t ) =
〈

#        »

g r ad f (γ(t )),γ′(t )
〉
=

n∑
i=1

x ′
i (t )

∂ f

∂xi
(γ(t ))

• savoir calculer des dérivées partielles [(u, v) 7→ f
(
x(u, v), y(u, v)

)
] de fonctions composées

VI) Exemples de résolutions d’équations aux dérivées partielles

Extrait du programme : « Exemples simples de résolutions d’équations aux dérivées partielles du premiers et du second ordres »

On pourra consulter les TD n°1, TD n° 2 et TD n° 3 du chapitre VIII
et en particulier le point méthode pour les EDP au début du TD n°3

CHAPITRE IX ESPACES PRÉHILBERTIENS ET EUCLIDIENS

I) Produit scalaire et norme

Les élèves doivent :

• savoir définir un produit scalaire et un espace préhilbertien/euclidien

• vérifier, dans une situation concrète, qu’une application donnée est un produit scalaire

• connaître les produits scalaires usuels de Rn et C0([a,b],R). Les élèves ont rencontré des produits scalaires sur Rn[X], sur
Mn(R) (exprimé à l’aide de la trace et des coefficients) ainsi que sur les suites de carrées sommables ℓ2(R) ou les fonctions de
carrées intégrables L2(I,R) sur un intervalle I de R.

• savoir définir la norme et la distance associées à un produit scalaire

• connaître et savoir utiliser l’inégalité de Cauchy-Schwarz et l’inégalité triangulaire dans un espace préhilbertien

• connaître et savoir utiliser l’identité du parallélogramme et les identités de polarisation dans un espace préhilbertien

II) Orthogonalité dans un espace euclidien

II-1) Vecteurs orthogonaux et théorème de Pythagore et II-5) Sev orthogonaux et orthogonal d’un sev Les élèves doivent :

• savoir définir l’orthogonalité entre 2 vecteurs ou l’orthogonalité d’une famille de vecteurs dans un espace préhilbertien

• savoir utiliser (et savoir redémontrer) qu’une famille orthogonale de vecteurs non nuls dans un espace préhilbertien est une
famille libre

• connaître et savoir utiliser le théorème de Pythagore

• connaître la définition de deux sev orthogonaux et de l’orthogonal F⊥ d’un sev F

• savoir que deux sev orthogonaux F et G sont en somme directe (autrement dit F∩G = {0E})

• savoir que F ⊂ G ⇒ G⊥ ⊂ F⊥, {0E}⊥ = E et E⊥ = {0E}

• savoir que F ⊂ (F⊥)⊥ et que F et F⊥ sont en somme directe (autrement dit F⊕F⊥ ⊂ E)

Attention! Si F n’est pas de dimension finie, les inclusions F⊕F⊥ ⊂ E et F ⊂ (F⊥)⊥ peuvent être stricte
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• si dimF <+∞, savoir déterminer F⊥ en utilisant une famille génératrice (e1, . . . ,en) de F :

F⊥ = {x ∈ E | ∀i ∈ �1,n�, 〈x,ei 〉 = 0}

II-3) Famille orthonormale et procédé d’orthonormalisation de Gram-Schmidt

Les élèves doivent

• savoir définir et caractériser une famille orthonormale ((xi )i∈I est orthonormale si ∀(i , j ) ∈ I2,
〈

xi , x j
〉= {

0 si i ̸= j
1 si i = j

La base canonique de Rn est orthonormée pour le produit scalaire usuel de Rn

La base canonique de Mn(R) est orthonormée pour le produit scalaire 〈A,B〉 = tr(ATB)

La base canonique de Rn[X] est orthonormée pour le produit scalaire 〈P,Q〉 =
n∑

k=0
ak bk si P =

n∑
k=0

ak Xk et Q =
n∑

k=0
bk Xk

• Algorithme de Gram-Schmidt (avec une condition d’unicité) :

- les élèves doivent savoir énoncer le théorème de Gram-Schmidt :

« On peut construire une unique famille orthonormale (ε1, . . . ,εN) à partir d’une famille libre (e1, . . . ,eN) vérifiant

i) ∀n ∈ �1,N�, Vect(ε1, . . . ,εn) = Vect(e1, . . . ,en) et ii) ∀n ∈ �1,N�, 〈en ,εn〉 > 0 »
- les élèves doivent savoir concrètement mettre en œuvre l’algorithme sur une famille avec un nombre « raisonnable » de
vecteurs (pas de justification à faire de la démarche suivie).

La rédaction proposée pour construire (ε1,ε2, . . . ,εn) à partir de (e1, . . . ,en) est :

- Etape no 1 : ε1 = e1

∥e1∥
Etape no 2 : ε2 = u2

∥u2∥
où u2 = e2 −〈e2,ε1〉ε1 Etape no 3 : ε3 = u3

∥u3∥
où u2 = e3 − (〈e3,ε1〉ε1 +〈e3,ε2〉ε2)

Ces étapes peuvent s’interprêter avec la notion de projection orthogonale :

Etape no 2 : La projection orthogonale de e2 sur F1 = Vect(e1) = Vect(ε1) est p(e2) = 〈e2,ε1〉ε1

aussi u2 = e2 −p(e2) dirige la droite orthogonale à F1 dans F2 = Vect(e1,e2) donc ε2 = u2

∥u2∥
Etape no 3 : La projection orthogonale de e3 sur F2 = Vect(e1,e2) = Vect(ε1,ε2) est p(e3) = 〈e3,ε1〉ε1 +〈e3,ε2〉ε2

aussi u3 = e3 −p(e3) dirige la droite orthogonale à F2 dans F3 = Vect(e1,e2,e3) donc ε3 = u3

∥u3∥
II-4) Orthogonalité dans un espace euclidien et II-5) Supplémentaire orthogonal d’un sev de dimension finie

Les élèves doivent

• savoir qu’il existe des bases orthonormées dans un sev de dimension finie d’un espace préhilbertien et pourvoir en détermi-
ner une par mise en œuvre de l’algorithme de Gram-Schmidt

• savoir mener les calculs de produit scalaire, de norme à l’aide des coordonnées dans une base orthonormée

Dans une BON, le calcul peut se mener directement sur les coordonnées comme usuellement dans Rn

• savoir que, si B = (ei )1ÉiÉn est une base orthonormée de E : x =
n∑

i=1
〈x,ei 〉ei pour tout vecteur x de E

III) Projection orthogonale en dimension finie

III-1) Projection orthogonale sur un sev de dimension finie

Les élèves doivent savoir que

• Si dimF <+∞ alors F et F⊥ sont supplémentaire dans E. Ainsi, si E est euclidien : dimF⊥ = dimE−dimF

• Si F est un hyperplan dont on dispose une équation a1x1 + ·· ·+ an xn = 0 dans une base orthonormée, alors F⊥ est une
droite dirigée par le vecteur #»n de coordonnées (a1, . . . , an) qu’on appelle vecteur normal à l’hyperplan.

• si F est un sev de dim finie de
(
E,〈.; .〉), la projection orthogonale pF sur F est le projecteur sur F parallèlement à F⊥

• une application f : E → E est une projection orthogonale lorsque


f ∈L (E)
f ◦ f = f
Ker f et Im f sont orthogonaux

• si (e1, . . . ,en) est une base orthonormée de F, on a, pour tout x de E, pF(x) =
n∑

i=1
〈ei , x〉ei
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• si F est un hyperplan, on utilise pF(x) = x−pF⊥(x) où on calcule facilement la projection orthogonale sur F⊥ par pF⊥(x) =〈
x,

#»n
∥ #»n ∥

〉
#»n

∥ #»n ∥ où #»n est un vecteur normal de l’hyperplan.

• le projeté orthogonal pF(x) sur un sev F de dimension finie dans
(
E,〈.; .〉) est caractérisé par :

{
pF(x) ∈ F
x −pF(x) ∈ F⊥

• choisir la démarche la plus adaptée selon le contexte pour déterminer une projection orthogonale :

Méthode 1 : on détermine une base B = (e1, . . . ,en) de F qu’on orthonormalise en (ε1, . . . ,εn) puis p(x) =
n∑

i=1
〈εi , x〉εi

Méthode 1 bis : on calcule plutôt le projeté q(x) sur F⊥ (surtout lorsque dimF⊥ est petit) et on utilise : p(x) = x −q(x)

Méthode 2 : on détermine une base B = (e1, . . . ,en) de F et on cherche p(x) sachant :

p(x) ∈ F ⇔∃(αi )1ÉiÉn ∈Rn , p(x) =
n∑

i=1
αi ei et x −p(x) ∈ F⊥ ⇔∀i ∈ �1,n�,

〈
x −p(x),ei

〉= 0

qui donne n équations permettant de déterminer α1,α2, . . . ,αn

Remarque : la notion de symétrie orthogonale n’est pas directement au programme mais elle l’est indirectement comme sy-
métrie vectorielle associée à un projecteur qui est une projection orthogonale.

III-2) Distance à un sous-espace vectoriel de dimension finie

• connaître la définition de la distance de x au sev F : d(x,F) = inf
{
∥x − f ∥ | f ∈ F

}
• savoir que si F est un sev de dimension finie de l’espace préhilbertien

(
E,〈., .〉) alors d(x,F) = ∥x−p(x)∥ où p(x) est la projec-

tion orthogonale sur F de x et savoir que p(x) est l’unique vecteur de F réalisant cela.

• savoir introduire et utiliser dans un problème de minimisation un calcul de distance d’un vecteur à un sev de dimension
finie dans un espace préhilbertien. Il faut bien préciser le contexte : l’espace euclidien

(
E,〈., .〉), le sev F et le vecteur x

On pourra consulter les TD n°1 et TD n° 2 du chapitre IX

• Exercices :
- Tous les exemples et exercices chapitre VIII auront été traités.
- Tous les exemples et exercices chapitre IX auront été traités (certains des derniers exercices seront peut-être terminé lundi
matin)

FIN
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