Programme de khôlle de la semaine n°10

L'oral commencera avec une question de cours issue de la la liste des questions de cours associée à ce programme et sera évaluée sur 4 points. La réponse à cette question de cours doit être rapide et précise! (Pas plus de 20 minutes)

• Cours :

COMPLÉMENTS SUR LES SÉRIES NUMÉRIQUES CHAPITRE III

I) L'essentiel de la PTSI sur les séries numériques

Les élèves doivent

- connaître et maîtriser le vocabulaire et les notations usuels des séries (terme général, somme partielle, série convergente/divergente, nature d'une série, somme, reste)
- connaître, reconnaître et utiliser les résultats sur les séries de référence (télescopique, géométrique, Riemann)
- connaître et utiliser les théorèmes sur la convergence des séries numériques (divergence grossière, opérations, série à termes positif, comparaison par inégalités, critère d'équivalence)

II) Résultats sur les séries absolument convergente

II-1) Convergence absolue

Les élèves doivent

- ouvoir définir la convergence absolue d'une série et savoir qu'elle entraîne la convergence de la série
- utiliser le résultat dit d'inégalités triangulaires sur la somme des séries lorsqu'une série converge absolument
- connaî tre un exemple de série qui converge sans converger absolument :

exemple de la série harmonique alternée $\sum_{n>1} \frac{(-1)^n}{n}$ avec détermination de la somme

II-2) Les théorèmes de convergence absolue

Les élèves disposent

- d'un résultat de comparaison et d'un critère d'équivalence pour la convergence absolue
- de la règle du « grand O »ou du « petit o »à utiliser en particulier pour mener une comparaison avec une série de Riemann ou une série géométrique
- de la règle de d'Alembert.

A cette occasion, $e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$ a été définie pour tout $z \in \mathbb{C}$. Le lien avec la définition de PTSI $e^z = e^{\Re e(z)} e^{i\Im m(z)}$ est admis. — du résultat sur le produit de Cauchy de deux séries numériques absolument convergentes

Cela permet de justifier que : $\forall (z, z') \in \mathbb{C}^2$, $e^{z+z'} = e^z e^z$

III) Compléments sur les séries à termes réels

III-1) Technique de comparaison série-intégrale

Les élèves doivent :

- savoir mettre une technique de comparaison série-intégrale pour étudier la convergence d'une série numérique ou pour estimer ses sommes partielles
- utiliser cette technique pour démontrer le critère de Riemann : $\sum \frac{1}{n^{\alpha}}$ converge $\Leftrightarrow \alpha > 1$

Les séries de Riemann, lorsqu'elles convergent, sont absolument convergentes

Une fiche méthodologique sur la comparaison série/intégrale a été distribuée et commentée.

III-2) Le théorème des séries alternées

Les élèves doivent

- savoir énoncer le résultat et connaître le résultat d'encadrement des sommes partielles et la majoration du reste associé
- connaître l'exemple classique des séries de Riemann alternée $\sum_{n\geqslant 1} \frac{(-1)^n}{n^{\alpha}}$ qui converge pour $\alpha>0$ (avec CVA si $\alpha>1$)
- pouvoir refaire tout ou partie de la démonstration du théorème des séries alternées à la deman
- savoir que

- l'hypothèse « le terme général tend vers 0 en décroissant » est essentielle dans le théorème des séries alternées
- $u_n \sim v_n$ et (v_n) décroît n'entraîne pas que (u_n) décroît
- l'hypothèse de signe ou la CVA est essentielle pour l'utilisation du critère d'équivalence

On pourra consulter le Td n°1 sur le chapitre 3 et le le Td n°2 sur le chapitre 3

CHAPITRE V COMPLÉMENTS SUR LES ÉQUATIONS DIFFÉRENTIELLES

I) Équations différentielles linéaires d'ordre 1 (Rappels et compléments PTSI)

Les élèves doivent :

- identifier une équation différentielle linéaire d'ordre 1 (EDL₁), identifier la variable, les coefficients et le second membre et identifier si elle est résolue en γ'
- connaître la structure algébrique de l'ensemble des solutions

$$\mathcal{S} = y_p + \text{Vect}(h)$$
 où $\begin{cases} y_p \text{ est une solution particulière} \\ h \text{ est une solution homogène non nulle} \end{cases}$ lorsque l'équation est résolue en y'

- savoir déterminer l'ensemble des solutions de y' + a(t)y = 0
- connaître le principe de superposition des solutions
- savoir déterminer les solutions de y' + a(t)y = b(t) par la méthode de variation de la constante
- connaître la notion de problème de Cauchy et l'unicité de la solution associée
- pouvoir mener un recollement de solutions à l'aide d'un raisonnement par analyse/synthèse en exploitant, par exemple, les développements limités pour caractériser la dérivabilité ponctuelle d'une solution.

II) Équations différentielles linéaires d'ordre 2

Les élèves doivent :

- identifier une équation différentielle linéaire d'ordre 2 (EDL₂), identifier la variable, les coefficients et le second membre et identifier si elle est résolue en y''
- connaître la structure algébrique de l'ensemble des solutions

$$\mathcal{S} = y_p + \text{Vect}(h_1, h_2)$$
 où $\begin{cases} y_p \text{ est une solution particulière} \\ h_1 \text{ et} h_2 \text{ sont des solutions homogènes non colinéaires} \end{cases}$ lorsque l'équation est

résolue en y''

- connaître la notion de problème de Cauchy et l'unicité de la solution associée
- identifier une EDL₂ à coefficients constants et déterminer l'ensemble des solutions homogènes à l'aide d'une équation caractéristique
- connaître, dans le cas d'une EDL₂ à coefficients constants, la règle pour la recherche d'une solution particulière analogue à un second membre du type Ke^{mx} avec K et m des scalaires (éventuellement $K\cos(\omega x)$ ou $K\sin(\omega x)$ en utilisant la partie réelle/imaginaire de $Ke^{i\omega}$)
- rechercher des solutions (homogènes ou particulières) sous une forme donnée (polynômiale, du type t^{α} , $e^{\alpha x}$, etc...)

Attention, pas de recherche de solution développable en série entière pour l'instant!

- pourvoir utiliser la méthode de Lagrange (dite d'abaissement de l'ordre) permettant de trouver toutes les solutions sous la forme $y = z \times h$ à l'aide d'une seule solution homogène h ne s'annulant pas
- powwydiy mtilisey mh chamgemenn delydriables n qw/seraltowbutts/suggeve/pat/le/sujetn/pomt/tesowdid mhe/fidil/a/coefficiemts how domstants/em/le/thywehamt/a/mhe/fisk/wmdh/d/mhe/fidil/a/boefficiemts/constants/.
- pouvoir mener un recollement de solutions à l'aide d'un raisonnement par analyse/synthèse en exploitant, par exemple, les développements limités pour caractériser la dérivabilité ponctuelle de y puis de y' traduisant le dérivabilité seconde de y.

On pourra consulter la carte mentale pour la résolution d'une EDL2 On pourra consulter le TD n° 1, le TD n° 2 et le TD n° 3 du chapitre 5

• Exercices :

- Tous les exemples et exercices du chapitre III auront été traités.
- Tous les exemples et exercices du chapitre V auront été traités.

FIN