EXERCICES SUR LE CHAPITRE IX: ESPACES PRÉHILBERTIENS ET EUCLIDIENS

Exemples du cours

Produits scalaires étudiés en classe

• Le produit scalaire usuel de
$$\mathbb{R}^n$$
: $\langle x, y \rangle = X^T Y = \sum_{i=1}^n x_i y_i$ où $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ et $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$

- Le produit scalaire usuel sur $\ell_2(\mathbb{N}) = \{u = (u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \sum u_n^2 \text{ converge}\}$ $\langle u, v \rangle = \sum_{n=0}^{+\infty} u_n v_n$
- <u>Le produit scalaire usuel de C⁰([a,b], \mathbb{R})</u>: $\langle f,g \rangle = \int_a^b f(t)g(t)dt$
- Le produit scalaire sur $L_2(I,\mathbb{R}) = \{ f \in C^0(I,\mathbb{R}) \mid f^2 \text{ est intégrable sur } I \} : \langle f,g \rangle = \int_I f(t)g(t)dt$
- Les produits scalaires sur $\mathbb{R}_n[X]$: $\langle P, Q \rangle = \int_0^1 P(t)Q(t)dt$ et $\langle P, Q \rangle = \sum_{k=0}^n a_k b_k$ où $P = \sum_{k=0}^n a_k X^k$ et $Q = \sum_{k=0}^n b_k X^k$
- <u>Le produit scalaire usuel de $M_n(\mathbb{R})$ </u> $\langle A, B \rangle = tr(A^T B) = \sum_{i=1}^n \sum_{j=1}^n [A]_{ij} [B]_{ij}$ où on note $[M]_{ij}$ le coefficient ligne i, colonne j de la matrice M

EXEMPLE N° 1 Montrer que, pour toute fonction f à valeurs réelles de classe C^1 sur \mathbb{R} avec f(0) = 0 alors:

$$\forall x \in \mathbb{R}, \ f^2(x) \le x \int_0^x f'^2(t) \, \mathrm{d}t$$

On pourra utiliser le produit scalaire usuel sur $C^0([\min(0, x), \max(0, x)])$

EXEMPLE N^0 2 Si F est un sous-espace vectoriel d'un espace préhilbertien $(E, \langle ., . \rangle)$,

Montrer que: $F \oplus F^{\perp} = E \Rightarrow (F^{\perp})^{\perp} = F$ Cela sera en particulier vérifié si F est de dimension finie

EXEMPLE N° 3 On munit $M_2(\mathbb{R})$ de son produit scalaire usuel $\langle A, B \rangle = tr(A^TB)$

Déterminer l'orthogonal de l'ensemble D des matrices diagonales

EXEMPLE N° 4 On considère
$$E = \mathbb{R}_n[X]$$
 et on définit $\langle P, Q \rangle = \sum_{k=0}^n P(k)Q(k)$

- **1.** Justifier que $(E, \langle ., . \rangle)$ est un espace euclidien.
- **2.** Si n = 3, démontrer que $F = \{P \in \mathbb{R}_3[X] \mid X(X 1) \text{ divise } P\}$ et $G = \text{Vect}(X^2 5X + 6)$ sont des sev orthogonaux.
- 3. On considère la famille des polynômes de Lagrange: $\forall i \in [0, n]$, $L_i = \prod_{\substack{k \in [0, n] \\ k \neq i}} \frac{X k}{i k}$

Justifier que $(L_1, L_2, ..., L_n)$ est une base orthonormée de E

EXEMPLE Nº 9/2

- 1) Déterminer une base orthonormée de l'hyperplan H de \mathbb{R}^4 d'équation x+y+z-t=0
- 2) Calculer la distance de a = (1,0,0,0) à H.
- 3) Expliciter H^{\perp} . Proposer une autre méthode pour calculer d(a, H).
- 4) Proposer une troisième méthode pour calculer p(a) sans utiliser la base orthonormée de Q1)

EXEMPLE N° 5 Dans l'espace euclidien usuel \mathbb{R}^4 , on considère le sev F d'équation $\begin{cases} x+y-z-t=0\\ x+3y+z-t=0 \end{cases}$.

Déterminer la matrice canoniquement associée à la projection orthogonal sur F.

Exemple N° 6 Déterminer
$$\inf \left\{ \int_0^{\pi} (t - a \cos t - b \sin t)^2 dt \mid (a, b) \in \mathbb{R}^2 \right\}$$

Exercices

EXERCICE Nº 1 On considère l'espace $E = \{ f \in C^0([0, +\infty[, \mathbb{R})] | f^2 \text{ est intégrable sur } [0, +\infty[\}$

On rappelle, dans cette exercice, que, pour $(a,b) \in \mathbb{R}^2$, $|ab| \le \frac{a^2 + b^2}{2}$.

- 1. Démontrer que E est un $\mathbb R$ espace vectoriel
- **2.** Prouver que $(f,g) \mapsto \langle f,g \rangle = \int_0^{+\infty} f(t)g(t)dt$ est un produit scalaire sur E
- 3. Démontrer que: $\int_0^{+\infty} \frac{e^{-t}}{\sqrt{1+t^2}} dt \le \frac{\sqrt{\pi}}{2}$

EXERCICE N° 2 On appelle E l'espace vectoriel des fonctions de classe C^2 sur [0,1] à valeurs réelles: $E = C^2([0,1],\mathbb{R})$

- 1. Montrer que $\langle f, g \rangle = \int_0^1 (f(t)g(t) + f'(t)g'(t)) dt$ définit un produit scalaire sur E.
- **2.** Déterminer la distance entre la fonction carrée et le sev $\mathbb{R}_1[X]$ dans cet espace euclidien. *où bien sûr on assimile un polynôme à la fonction polynômiale associée.*
- **3.** Prouver que $F = \{ f \in E \mid f(0) = f(1) = 0 \}$ et $G = \{ f \in E \mid f'' = f \}$ sont des supplémentaires orthogonaux pour ce produit scalaire.
- **4.** Préciser le projeté orthogonal d'une application h de E sur G

EXERCICE N° 3 Dans l'espace euclidien \mathbb{R}^n usuel,

déterminer la distance de (1,0,...,0) à H = $\{(x_1,...,x_n) \mid x_1+x_n=0\}$

EXERCICE N⁰ 4 Soit (E, $\langle .,. \rangle$) un espace euclidien de dimension $n \ge 1$.

On dit qu'un en domorphisme est antisymétrique quand : $\forall x \in E, \forall y \in E, \langle f(x), y \rangle = -\langle x, f(y) \rangle$

- **1.** On note $\mathscr{B} = (e_1, ..., e_n)$ une base orthonormée de E et $f \in \mathscr{L}(E)$. Justifier que, pour $j \in [1, n]$, $f(e_j) = \sum_{i=1}^n \langle f(e_j), e_i \rangle e_i$ En déduire que la matrice d'un endomorphisme antisymétrique dans une base orthonormée est une matrice antisymétrique.
- **2.** Montrer qu'un endomorphisme f est antisymétrique si et seulement si $\langle f(x), x \rangle = 0$ pour tout x de E
- 3. Soit f un endomorphisme antisymétrique, montrer que $\operatorname{Ker} f$ et $\operatorname{Im} f$ sont des supplémentaires orthogonaux.
- **4.** On suppose désormais que f est un endomorphisme antisymétrique et que n=3.
 - **a.** Justifier que f admet au moins une valeur propre réelle qui ne peut valoir que 0.
 - **b.** Montrer qu'il existe une base orthonormée \mathscr{B} de E telle que $\operatorname{Mat}_{\mathscr{B}}(f) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\alpha \\ 0 & \alpha & 0 \end{pmatrix}$ où $\alpha \in \mathbb{R}$