COMPLÉMENT SUR LES COURBES PLANES

CHAPITRE V

EXEMPLE DU COURS SUR LE CHAPITRE V

EXEMPLE N $^{\mathrm{0}}$ 1 $\,$ a et b sont des paramètre réels avec $ab\neq 0$

1. Donner un point et un vecteur directeur de la droite Δ : bx + ay - 2ab = 0

2. Donner le centre et le rayon du cercle \mathcal{C} : $x^2 + y^2 - 2(a+b)(x+y) + 8ab = 0$

3. Donner une équation cartésienne de la parallèle Δ' à Δ issue de P(b,a) en utilisant: b) un produit scalaire a) un déterminant

4. On suppose $a \neq b$ et on pose $c = (1 + \delta)a + (1 - \delta)b$. Déterminer δ pour que le point Q(c, c) soit sur le cercle \mathscr{C} . Donner une équation cartésienne de la tangente ${\mathcal F}$ à ${\mathscr C}$ en Q sans utiliser ni produit scalaire, ni déterminant.

EXEMPLE Nº 2 Reconnaître et esquisser les courbes données par la représentation:

$$\frac{1}{11}4x^2 + y^2 + 16x - 2y + 8 = 0 \qquad 21 - x + 2 + 4y^2 = 0 \qquad 31 x^2 - 3y^2 + 6x - 12y - 12 = 0 \qquad 41 \quad y^2 - 2y - 4x^2 = 0$$

 $\frac{5)}{2} \left\{ \begin{array}{ll} x(t) = t^2 \\ y(t) = t \end{array}, \ t \geqslant 0 \\ \begin{array}{ll} (t) = 3 \operatorname{ch} t \\ y(t) = 1 - \operatorname{sh} t \end{array}, \ t \in \mathbb{R} \\ \begin{array}{ll} 7) \left\{ \begin{array}{ll} x(t) = 2 + 3 \sin t \\ y(t) = 1 + \cos t \end{array}, \ t \in \left[0; \frac{\pi}{2}\right] \\ \text{Préciser le centre et les sommets éventuels. Donner une équation cartésienne des asymptotes si c'est une hyperbole.} \end{array} \right.$

EXEMPLE No 3 a et b sont des nombres réels avec $ab \neq 0$ et $a \neq b$ et on pose $c = (1 + \delta)a + (1 - \delta)b$ avec $\delta = \pm 1$

1. Retrouver avec ce résultat une équation cartésienne, vu dans l'exemple 1, de la tangente $\mathscr F$ en $\mathbb Q(c,c)$ au cercle $\mathcal{C}: x^2 + y^2 - 2(a+b)(x+y) + 8ab = 0$

2. Déterminer la tangente au point $M_0(\frac{5}{2},4)$ de l'hyperbole \mathscr{H} de sommet A(-2,1) et A'(2,1) qui admet pour asymptote la droite Δ : y = 2x + 1

a. en utilisant une équation cartésienne de ${\mathcal H}$

 ${f b.}$ en utilisant une représentation paramétrique de ${\mathscr H}$

Étant donnée une droite Δ du plan et F un point qui n'est pas sur Δ , on veut déterminer l'enveloppe $\mathscr E$ des médiatrices de [HF] lorsque H parcourt la droite Δ .

On considère, pour cela, un repère orthonormé $(0; \vec{7}, \vec{7})$ où 0 est le projeté orthogonal de F sur Δ et $\vec{7} = \frac{1}{\|\vec{0}\vec{F}\|}$

1. Justifier qu'il existe un réel c non nul fixé avec $\mathrm{F}(c,0)$ et un réel t (paramètre) tel que $\mathrm{H}(0,t)$

2. Donner un point A(t) et un vecteur directeur $\vec{u}(t)$ de la médiatrice Δ_t de [HF], exprimé à l'aide de c et t.

3. On appelle M(t) = [x(t), y(t)] le point courant de l'enveloppe \mathscr{E} cherchée situé sur Δ_t

a. Justifier que: $\exists \lambda(t) \in \mathbb{R}$, $M(t) = A(t) + \lambda(t) \overrightarrow{u}(t)$

b. Justifier que: $\det(\vec{u}(t), M'(t)) = 0$

c. Calculer alors $\lambda(t)$ puis exprimer x(t) et y(t).

4. Donner une équation cartésienne de l'enveloppe $\mathscr E$ cherchée et en déduire la nature de cette enveloppe.

EXEMPLE Nº 5 Donner la longueur

d'un cercle de rayon R?

• de la courbe représentative de la fonction ch pour $x \in [-1, 1]$?

• d'un arche de cycloïde de représentation : $\left\{ \begin{array}{l} x(t) = t - \sin t & ? \\ y(t) = 1 - \cos t & ? \end{array} \right.$

CHAPITRE V

COMPLÉMENT SUR LES COURBES PLANES

 $\overline{\text{EXEMPLE N}^{\text{o}} \, 6} \, \text{On veut déterminer, de 2 façons, la courbure aux points réguliers de la cycloïde <math>\Gamma$ donnée par

$$f(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} t - \sin t \\ 1 - \cos t \end{pmatrix}$$

1. Pourquoi peut-on concentrer l'étude de la cycloïde pour $t \in [0,\pi]$?

2. On note T le premier vecteur de Frenet.

Montrer que
$$\overrightarrow{T} = \begin{pmatrix} \sin \frac{t}{2} \\ \frac{t}{2} \\ \cos \frac{t}{2} \end{pmatrix}$$
 aux points réguliers pour les paramètres $t \in [0, \pi]$.

3. Déterminer la courbure en utilisant les formules de Frenet.

4. Déterminer γ en utilisant un relèvement de \overrightarrow{T} sous la forme $\overrightarrow{T} = \begin{pmatrix} \cos\alpha(t) \\ \sin\alpha(t) \end{pmatrix}$

SUITE EXEMPLE Nº 6

5) Déduire la développée Γ_D de la cycloïde à partir du calcul du rayon de courbure vu auparavant.

6) Retrouver cette développée par une autre méthode.

 $\boxed{\text{EXEMPLE N}^{\text{O}} 7} \text{ Déterminer, de deux façons, la développée de l'astroïde } \Gamma : \left\{ \begin{array}{l} x(t) = \cos^3 t \\ y(t) = \sin^3 t \end{array}, t \in \left] 0, \frac{\pi}{2} \right[\end{array}$

EXERCICES SUR LE CHAPITRE V

EXERCICE N° 1 Le plan est rapporté à un repère orthonormé $(0; \vec{\imath}, \vec{j})$ et m est un réel non nul. On introduit les points A(m,0) et B(3m;0) et le cercle \mathcal{C}_1 d'équation $x^2 + y^2 - 2mx = 0$

- 1. Tangentes à un cercle en un point extérieur
 - **a.** Donner le centre et le rayon R_1 de \mathcal{C}_1 . Vérifier que B est un point situé à l'extérieur de \mathcal{C}_1 .
 - **b.** Δ_p est la droite de pente $p \in \mathbb{R}$ qui passe par B et Δ_{∞} la droite verticale qui passe par B.
 - **i.** Prouver que B est la projection orthogonale de A sur Δ_{∞} . En déduire que Δ_{∞} ne rencontre pas \mathscr{C}_1 .
 - **ii.** Déterminer le projeté H_p de A sur Δ_p lorsque p est un réel puis la distance de A à Δ_p .
 - iii. Déterminer alors les deux tangentes à \mathscr{C}_1 issue de B.
- **2.** On considère le cercle \mathscr{C}_2 de centre B et de rayon 3. Préciser, suivant la valeur de m, l'intersection $\mathscr{C}_1 \cap \mathscr{C}_2$

EXERCICE N° 2 Dans un repère $(0; \vec{\imath}, \vec{\jmath})$ orthonormé du plan, on considère la droite Δ : x = -2 et le point F de coordonnées (1,0). Déterminer une équation réduite et esquisser la conique \mathscr{C} de foyer F, de directrice \mathscr{D} et d'excentricité $e = \frac{1}{2}$. Même question avec e = 2.

EXERCICE N° 3 Déterminer l'enveloppe de la famille de droites $(\mathcal{D}_t)_{t \in \mathbb{R}}$ où \mathcal{D}_t : $(t^3 + 3t)x - 2y - t^3 = 0$.

EXERCICE N° 4 Quelle est la longueur de la courbe représentative de la fonction ln pour $x \in [\sqrt{3}, \sqrt{8}]$?

Poser $u = \sqrt{1 + t^2}$

EXERCICE No 5

- 1. Déterminer une représentation paramétrique de la développée d'une ellipse en utilisant un calcul d'enveloppe.
- **2.** Justifier que cette développée a une représentation paramétrique de la forme $\begin{pmatrix} X(t) \\ Y(t) \end{pmatrix} = \begin{pmatrix} \alpha \cos^3 t \\ k\alpha \sin^3 t \end{pmatrix}$ où $(\alpha, k) \in \mathbb{R}^3$ C'est donc l'image d'un astroïde $\begin{cases} x(t) = \alpha \cos^3 t \\ y(t) = \alpha \sin^3 t \end{cases}$ par une affinité vectorielle $\begin{bmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x \\ ky \end{bmatrix}$

EXERCICE N° 6 On considère la courbe $\mathscr C$ paramétrée par $\mathscr C$: $f(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} (1+t)^2 e^{-t} \\ 2(1+t)e^{-t} \end{pmatrix}$ pour $t \in [-1, +\infty[$

- 1. Construire la courbe \mathscr{C}
- **2.** Calculer la longueur ℓ de la courbe On pourra calculer la longueur pour $t \in [-1, A]$ puis faire tendre A vers $+\infty$
- 3. a. Déterminer le repère de Frenet de cette courbe.
 - **b.** Pour t réel, calculer $\cos(2\operatorname{Arctan} t)$ et $\sin(2\operatorname{Arctan} t)$.
 - c. Déterminer alors la courbure de cette courbe
- **4.** Déterminer la développée \mathscr{C}_D de cette courbe en utilisant deux méthodes différentes.

EXERCICE N° 7 On considère la courbe Γ: $\begin{cases} x(t) = t - \frac{\sinh t}{\cosh t} \\ y(t) = \frac{1}{\cosh t} \end{cases}$

- 1. Construire la courbe Γ
- 2. Montrer que $x'(t)^2 + y'(t)^2 = \frac{\sinh^2 t}{\cosh^2 t}$ puis déterminer le repère de Frenet en un point régulier.
- 3. Déterminer alors le rayon de courbure en un point régulier.
- **4.** Déterminer la développée de Γ à l'aide du rayon de courbure.
- 5. En remarquant que la normale à Γ en un point régulier est dirigée par $\overrightarrow{n}(t) = \begin{pmatrix} \frac{1}{\sinh t} \\ 1 \end{pmatrix}$, déterminer la développée d'une autre façon en utilisant un calcul d'enveloppe.