EXEMPLE DU COURS SUR LE CHAPITRE XIII

EXEMPLE N° 0 : Justifier que les applications suivantes sont dérivables et calculer la dérivée lorsque c'est possible

$$F_1(x) = \int_x^{x^2} \frac{dt}{\ln t}$$
 et $F_2(x) = \int_x^{+\infty} \frac{e^{-t}}{t} dt$

EXEMPLE Nº 1 On considère les intégrales à paramètre suivante

$$F(x) = \int_0^1 \frac{1 - t^x}{1 - t} dt \text{ où } x \ge 0 \qquad G(x) = \int_0^{+\infty} e^{-t} t^x dt \quad \text{où } x \ge 0 \qquad H(a) = \int_0^1 \frac{\ln x}{x + a} dx \quad \text{où } a \ge 0$$
 et enfin $L_{\varphi}(x) = \int_0^{+\infty} e^{-tx} \varphi(t) dt \quad \text{où } x \in \mathbb{R} \quad \text{pour } \varphi \text{ est continue sur }]0, +\infty[\text{ (Transformée de Laplace de } \varphi)]$

- I. Préciser, dans chaque cas, le paramètre d'une part, l'expression et l'intervalle d'intégration d'autre part.
- **II.** Donner le domaine de définition des fonctions F, G, H, L_v et L_w où $v(t) = \ln t$ et $w(t) = t \ln t$
- III. Utilisation du théorème sur la continuité
 - a) Étudier la continuité de F sur $[0, +\infty[$ (on pourra d'abord dominer sur [0, A] avec 0 < A). En déduire $\lim_{t \to 0^+} \int_0^1 \frac{1-t^A}{1-t} dt$
 - **b)** de H sur $]0, +\infty[$ (on pourra d'abord dominer sur $[\varepsilon, A]$ avec $0 < \varepsilon < A$)
- IV. Utilisation du théorème sur la dérivabilité
 - a) Démontrer que H est de classe C^1 sur $[\varepsilon, +\infty[$ pour tout $\varepsilon >$ et calculer H'(a) sans le symbole intégral. Déterminer alors l'expression de $H(a) + H(\frac{1}{a})$ sans symbole intégral en faisant intervenir la constante H(1).
 - **b)** Vérifier que L_v est de classe C^1 sur $]0, +\infty[$ (on pourra dominer sur $[a, +\infty[$ où a > 0)Montrer que $xL'_{\nu}(x) = -\frac{1}{x} - L_{\nu}(x)$ pour x > 0 puis en déduire $L_{\nu}(x)$ en fonction de la constante $L_{\nu}(1)$.

V. Question 4 du sujet Maths C de 2017

a) Soit A un réel strictement positif. Montrer que, pour tout réel strictement positif t, et tout réel x de [0, A] :

$$|e^{-t}t^{x}| \le (1+t^{A})e^{-t}$$

- b) Montrer que G est continue sur [0, A].
- c) Montrer que G est de classe C^{∞} sur [0, A].
- d) En déduire que la fonction G est de classe C^{∞} sur $[0, +\infty[$ et exprimer, pour tout entier naturel n et pour tout $x \ge 0$, $G^{(n)}(x)$ sous forme d'une intégrale.

EXEMPLE N° 2 Étudier la continuité de
$$\left[F: x \mapsto \int_0^{+\infty} x e^{-xt} dt \right]$$
 sur $[0, +\infty[$

EXERCICES SUR LE CHAPITRE XIII

EXERCICE Nº 1 On considère la fonction f définie par : $f(x) = \int_0^{+\infty} e^{-t^2} \operatorname{ch}(2xt) dt$

- 1. Justifier que f est définie pour tout x réel.
- **2.** Établir que f est de classe C^1 sur [-A, A] pour tout réel A > 0.
- **3.** En déduire que f est solution sur $\mathbb R$ d'une équation différentielle linéaire du premier ordre.
- **4.** Déterminer enfin f(x) sans le symbole intégrale. On rappelle que $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$

EXERCICE N° 2 On définit la fonction f par : $f(x) = \int_0^{+\infty} e^{-xt} \frac{\sin t}{t} dt$

- 1. Prouver que, pour tout t réel, on a : $|\sin t| \le |t|$
- **2.** Prouver que f est définie sur $[0, +\infty[$.
- **3.** Montrer que $\lim_{x \to +\infty} f(x) = 0$ et, en admettant $|f(x) f(0)| \le 2x$ pour tout réel $x \ge 0$, $\lim_{x \to 0^+} f(x) = f(0)$
- **4.** Montrer que f est de classe C^1 sur $]0, +\infty[$ et qu'elle est continue sur $[0, +\infty[$ *On pourra dominer sur* $[\varepsilon, +\infty[$ *pour* $\varepsilon > 0$
- **5.** Prouver que : $\forall x > 0$, $f'(x) = -\frac{1}{1+x^2}$. Exprimer alors f(x) à l'aide des fonctions usuelles.
- **6.** Déduire la valeur de l'intégrale de Dirichlet $I = \int_0^{+\infty} \frac{\sin t}{t} dt$.

EXERCICE N° 3 On considère la fonction f définie par : $f(x) = \int_0^{+\infty} \frac{\sin^2(xt)}{t^2} e^{-t} dt$

- 1. Établir et quantifier l'égalité : $\int_0^x \operatorname{Arctan}(2t) dt = x \operatorname{Arctan}(2x) \frac{1}{4} \ln(1 + 4x^2)$
- **2.** Prouver que f est de classe C^2 sur \mathbb{R} . On rappelle que $\forall u \in \mathbb{R}$, $|\sin u| \le |u|$.
- **3.** Préciser f''(x) et en déduire l'expression de f à l'aide des fonctions usuelles.