PT 2024-2025: Correction du DM nº 6

Soit $n \in \mathbb{N}$, l'espace $\mathbb{R}_n[X]$ est muni de son produit scalaire canonique

$$\langle P, Q \rangle = \sum_{k=0}^{n} a_k b_k$$
 si $P = \sum_{k=0}^{n} a_k X^k$ et $Q = \sum_{k=0}^{n} b_k X^k$

et on note $\|.\|$ la norme associée. On considère le sous-espace vectoriel $H = \{P \in \mathbb{R}_n[X] \mid P(1) = 0\}$

1. Rappeler, sans démonstration, les propriétés permettant de vérifier que (.,.) est un produit scalaire.

Il s'agit de vérifier que

- (forme) $\forall (P,Q) \in \mathbb{R}_n[X]^2$, $\langle P,Q \rangle$ existe et c'est un réel
- (symétrique) $\forall (P,Q) \in \mathbb{R}_n[X]^2$, $\langle P,Q \rangle = \langle Q,P \rangle$
- (bilinéaire) Pour $P \in \mathbb{R}_n[X]$ fixé, $[Q \mapsto \langle P, Q \rangle]$ et $[Q \mapsto \langle Q, P \rangle]$ sont des applications linéaires sur $\mathbb{R}_n[X]$

Lorsque le caractère symétrique a été prouvé, on ne prouve que la linéarité de $[O \mapsto \langle P, O \rangle]$ soit :

$$\forall (Q_1, Q_2) \in \mathbb{R}_n[X], \forall \alpha \in \mathbb{R}, \langle P, \alpha Q_1 + Q_2 \rangle = \alpha \langle P, Q_1 \rangle + \langle P, Q_2 \rangle$$

- (positif) Pour $P \in \mathbb{R}_n[X]$, $\langle P, P \rangle \ge 0$
- (défini) Pour $P \in \mathbb{R}_n[X]$, $\langle P, P \rangle = 0 \Rightarrow P = 0$
- **2.** Démontrer que $\dim H = n$ sans chercher à expliciter une base de H.

<u>Méthode nº 1</u>: H est caractérisée par une équation linéaire $\sum_{k=0}^{n} a_k = 0$ où $(a_0, ..., a_n)$ sont les coordonnées dans la base canonique

de $\mathbb{R}_n[X]$ aussi H est un hyperplan de $\mathbb{R}_n[X]$ et donc dim H = dim $\mathbb{R}_n[X] - 1 = (n+1) - 1 = n = \dim H$

Méthode n° 2 : $H = \text{Ker } \varphi \text{ où } \varphi \in \mathcal{L}(\mathbb{R}_n[X], \mathbb{R}) \text{ donné par : } \varphi(P) = P(1)$

Comme φ n'est pas nulle $(\varphi(1) = 1)$, son image, incluse dans \mathbb{R} et de dimension supérieure à 1 vaut forcément Im $m\varphi = \mathbb{R}$

Dès lors, par le théorème du rang, dim H = dim Ker $\varphi = \dim \mathbb{R}_n[X] - \dim \operatorname{Im} m\varphi = (n+1) - 1 = n$

- **3.** Dans cette question seulement n = 3. On pose $P_1 = X 1$, $P_2 = X^2 \frac{1}{2}X \frac{1}{2}$ et $P_3 = X^3 \frac{1}{3}X^2 \frac{1}{3}X \frac{1}{3}$
 - **a.** Prouver que (P_1, P_2, P_3) est une base orthogonale de H.

• On vérifie d'abord que c'est une famille de polynômes de H: $\forall i \in \llbracket 1,3 \rrbracket$, $\deg(P_i) \leq 3$ et $P_1(1) = 1 - 1 = 0$, $P_2(1) = 1 - \frac{1}{2} - \frac{1}{2} = 0$ et $P_3(1) = 1 - \frac{1}{3} - \frac{1}{3} = 0$ donc les polynômes P_1, P_2 et P_3 sont dans H • On vérifie ensuite que c'est une famille orthogonale : $\langle P_1, P_2 \rangle = 0 - \frac{1}{2} + \langle -1 \rangle \times -\frac{1}{2} = 0$, $\langle P_1, P_3 \rangle = 0 + 0 - \frac{1}{3} - \langle -1 \rangle \times \frac{1}{3} = 0$ et $\langle P_2, P_3 \rangle = 0 - \frac{1}{3} - \frac{1}{6} - \frac{1}{6} = 0$ • Puisque (P_1, P_2, P_3) est orthogonale, (P_1, P_2, P_3) est une famille libre de $\mathbb{R}_n[X]$.

- (P_1, P_2, P_3) est une famille libre de H avec $Card(P_1, P_2, P_3) = 3 = \underline{dim H} \underline{donc c'est une base de H}$

Finalement, (P_1, P_2, P_3) est une base orthogonale de H

b. En déduire la distance du polynôme constant R = 1 à H.

On sait que la distance de 1 à H est d(R, H) = ||R - p(R)|| où p(R) est la projection orthogonale de R = 1 sur H.

On construit facilement une base orthonormée de H en normant les vecteurs de la base orthogonale (P1, P2, P3):

$$(E_1,E_2,E_3) = \left(\frac{P_1}{\|P_1\|},\frac{P_2}{\|P_2\|},\frac{P_3}{\|P_3\|}\right) \text{ est une base orthonorm\'ee de H et alors}: \quad P(1) = \langle R,E_1\rangle E_1 + \langle R,E_2\rangle E_2 + \langle R,E_3\rangle E_3$$

$$soit: P(R) = \frac{\langle R, P_1 \rangle}{\|P_1\|^2} P_1 + \frac{\langle R, P_2 \rangle}{\|P_2\|^2} P_2 + \frac{\langle R, P_3 \rangle}{\|P_3\|^2} P_3 = \frac{-1}{2} (X-1) + \frac{-\frac{1}{2}}{\frac{3}{2}} (X^2 - \frac{1}{2}X - \frac{1}{2}) + \frac{-\frac{1}{3}}{\frac{4}{3}} (X^3 - \frac{1}{3}X^2 - \frac{1}{3}X - \frac{1}{3}) = -\frac{1}{4}X^3 - \frac{1}{4}X^2 - \frac{1}{4}X + \frac{3}{4}X - \frac{1}{4}X - \frac{1}{$$

Puis:
$$\|R - P(R)\| = \|\frac{1}{4}X^3 + \frac{1}{4}X^2 + \frac{1}{4}X + \frac{1}{4}\| = \frac{1}{4}\sqrt{4 \times 1^2} = \boxed{\frac{1}{2} = d(R, H)}$$

Vérifier que $N = 1 + X + X^2 + X^3$ est normal à H

Méthode 1 : On vérifie que < N, $P_1 >= 0 =<$ N, $P_2 >=<$ N, $P_3 >$ et donc N \in H $^{\perp}$ or dim(H $^{\perp}$) = 1 donc N dirige bien la droite vectoriel H[⊥] et c'est donc, par définition, un vecteur normal de H

Méthode 2 : On cherche une équation de H dans la base orthonormée $(1, X, X^2, X^3)$ de $\mathbb{R}_3[X]$:

$$\overline{P = a_0 + a_1}X + a_2X^2 + a_3X^3 \in H \Leftrightarrow a_0 + a_1 + a_2 + a_3 = 0 \Leftrightarrow 1 \times a_0 + 1 \times a_1 + 1 \times a_2 + 1 \times a_3 = 0 \Leftrightarrow < N, P >= 0$$

 $X^2 + X^3$ est un vecteur normal à H

d. Retrouver la distance de R = 1 à H en utilisant le polynôme N

On peut alors choisir un vecteur N_1 normal et unitaire de $H: N_1 = \frac{N}{\|N\|} = \frac{N}{\sqrt{1+1+1+1}} = \frac{1}{2}N$

En notant $p_{\mathbf{H}^{\perp}}(\mathbf{R})$ le projeté orthogonal de \mathbf{R} sur \mathbf{H}^{\perp} , on a :

$$d(\mathbf{R},\mathbf{H}) = \|p_{\mathbf{H}^{\perp}}(\mathbf{R})\| = \|\langle \mathbf{R}, \mathbf{N}_1 \rangle \mathbf{N}_1\| = \left|\langle \mathbf{R}, \mathbf{N}_1 \rangle \left| \|\mathbf{N}_1\| = \left| \frac{1}{2} + 0 + 0 + 0 \right| \times 1 = \frac{1}{2}$$

- **4.** On revient dans le cas général où n est un entier naturel quelconque.
 - On pose $Q_k = X^k 1$ pour $k \in [1, n]$. Vérifier que $(Q_k)_{k \in [1, n]}$ est une base de H qui n'est pas orthogonale.

```
Pour k \in [1, n], Q_k(1) = 1 - 1 = 0 \Rightarrow Q_k \in H et \deg(Q_k) = k \text{ d'où } 0 < \deg(Q_1) < \deg(Q_2) < \cdots < \deg(Q_n)
La \ famille \ (Q_k)_{k \in [\![1,n]\!]} \ est \ une \ famille \ libre \ (\text{car famille de polynômes non nuls à degrés 2 à 2 distincts}) \ de \ H
et \operatorname{Card}\left((Q_k)_{k \in [1,n]}\right) = n = \dim H donc (Q_k)_{k \in [1,n]} est une base de H
Comme \langle Q_1, Q_2 \rangle = \langle X - 1, X^2 - 1 \rangle = 0 + 0 + 1 \neq 0 ce n'est pas une base orthogonale
```

b. Déterminer la projection orthogonale du polynôme constant 1 sur H en utilisant la base précédente mais sans chercher à la transformer en une base orthonormée.

On ne dispose pas d'une base orthonormée mais d'une base quelconque de H.

On utilise la caractérisation de la projection orthogonale p(R) par : $p(R) \in H$ et $R - p(R) \in H^{\perp}$

$$\underline{\text{M\'ethode n}^{\text{o}} \ 1} : \text{On cherche P(R)} = \sum_{k=0}^{n} a_k \mathbf{X}^k \text{ où } (a_0, \dots, a_n) \in \mathbb{R}^{n+1} \text{ avec} : \\ \mathbf{P(R)} \in \mathbf{H} \Leftrightarrow a_0 + a_1 + \dots + a_n = 0 \text{ (\'evaluation en 1 nulle)}$$

$$\mathbf{R} - \mathbf{P}(\mathbf{R}) \in \mathbf{H}^{\perp} \Leftrightarrow \forall k \in [1, n], \langle \mathbf{R} - \mathbf{P}(\mathbf{R}), \mathbf{Q}_k \rangle = 0 \Leftrightarrow \langle -a_n \mathbf{X}^n \cdots - a_1 \mathbf{X} + (1 - a_0), \mathbf{X}^k - 1 \rangle = 0 \Leftrightarrow -a_k - (1 - a_0) = 0 \Leftrightarrow a_k = a_0 - 1 = 0$$

Alors:
$$\sum_{k=0}^{n} a_k = 0 \Leftrightarrow a_0 + \sum_{k=1}^{n} (a_0 - 1) = 0 \Leftrightarrow (n+1)a_0 - n = 0 \Leftrightarrow a_0 = \frac{n}{n+1}$$

Finalement:
$$p(R) = \frac{n}{n+1} + \sum_{k=1}^{n} \left(\frac{n}{n+1} - 1\right) X^k = \boxed{\frac{n}{n+1} - \frac{1}{n+1} \left(X + X^2 + \dots + X^n\right) = p(R)}$$

<u>Méthode n° 2</u>: On cherche $P(R) = \sum_{i=0}^{n} \alpha_i Q_i$ où $(\alpha_0, ..., \alpha_n) \in \mathbb{R}^{n+1}$ puisque $P(R) \in H = \text{Vect}(Q_1, ..., Q_n)$ et

$$\mathbf{R} - \mathbf{P}(\mathbf{R}) \in \mathbf{H}^{\perp} \Leftrightarrow \forall k \in [\![1,n]\!], \langle \mathbf{R} - \mathbf{P}(\mathbf{R}), \mathbf{Q}_k \rangle = 0 \Leftrightarrow \forall k \in [\![1,n]\!], \langle \mathbf{R}, \mathbf{Q}_k \rangle = \sum_{i=1}^n \langle \mathbf{Q}_i, \mathbf{Q}_k \rangle$$

Or:
$$\langle R, Q_k \rangle = 1 \times (-1) = -1$$
 et $\langle Q_i, Q_k \rangle = (-1)(-1) = 1$ si $i \neq k$ et $\langle Q_k, Q_k \rangle = (-1)(-1) + 1 \times 1 = 2$

Or:
$$\langle \mathbf{R}, \mathbf{Q}_k \rangle = 1 \times (-1) = -1$$
 et $\langle \mathbf{Q}_i, \mathbf{Q}_k \rangle = (-1)(-1) = 1$ si $i \neq k$ et $\langle \mathbf{Q}_k, \mathbf{Q}_k \rangle = (-1)(-1) + 1 \times 1 = 2$

$$\begin{cases}
2\alpha_1 + \alpha_2 + \dots + \alpha_n = -1 \\
\alpha_1 + 2\alpha_2 + \dots + \alpha_n = -1
\end{cases} \qquad \begin{cases}
\alpha_1 + (\alpha_1 + \alpha_2 + \dots + \alpha_n) = -1 \\
\alpha_2 - \alpha_1 = 0 \quad \mathbf{L}_2 - \mathbf{L}_2 - \mathbf{L}_1
\end{cases} \Rightarrow \alpha_1 = \alpha_2 = \dots = \alpha_n \text{ et } (n+1)\alpha_1 = -1$$

$$\vdots \qquad \qquad \Rightarrow \alpha_1 = \alpha_2 = \dots = \alpha_n \text{ et } (n+1)\alpha_1 = -1$$
Finalement: $p(\mathbf{R}) = \sum_{k=1}^n \left(-\frac{1}{n+1} \right) (\mathbf{X}^k - 1) = \boxed{\frac{n}{n+1} - \frac{1}{n+1} \left(\mathbf{X} + \mathbf{X}^2 + \dots + \mathbf{X}^n \right) = p(\mathbf{R})}$

$$\underline{\mathbf{Remarque}} : \text{ on retrouve } \mathbf{P}(\mathbf{R}) = \frac{3}{4} - \frac{1}{4} (\mathbf{X} + \mathbf{X}^2 + \mathbf{X}^3) \text{ dans le cas } n = 3 \dots$$

Finalement:
$$p(R) = \sum_{k=1}^{n} \left(-\frac{1}{n+1} \right) (X^k - 1) = \boxed{\frac{n}{n+1} - \frac{1}{n+1} \left(X + X^2 + \dots + X^n \right) = p(R)}$$

Quel théorème du cours permettrait d'obtenir une base orthonormée de H?

Décrire la méthode sur les 3 premières étapes sans faire les calculs de produits scalaires.

Il suffit d'appliquer | l'algorithme de Gram-Schmidt | sur cette base $(Q_k)_{k \in [1,n]}$ de H

On construit les 3 premiers vecteurs de la base orthonormée $(\epsilon_1, ..., \epsilon_n)$ de la façon suivante :

$$\epsilon_1 = \frac{Q_1}{\|Q_1\|} \qquad \epsilon_2 = \frac{U_2}{\|U_2\|} \text{ où } U_2 = Q_2 - < Q_2, \epsilon_1 > \epsilon_1 \qquad \epsilon_3 = \frac{U_3}{\|U_3\|} \text{ où } U_3 = Q_3 - < Q_3, \epsilon_1 > \epsilon_1 - < Q_3, \epsilon_2 > \epsilon_2$$

DM nº 6 2/2